
®

DTS Product Manual

© 2023 Realworld Systems B.V.

3

DTS Product Manual © 2023 Realworld Systems B.V.

Table of Contents

1. Introduction 9

1.1 Copyrights .. 10

1.2 Welcome .. 12

1.3 Manual Version .. 13

1.4 Release Notes .. 13

2. Deployment 15

2.1 Prerequisites .. 17

2.2 Basic Deployment ... 18

3. Web UI 25

3.1 Login .. 26

3.2 Workspace .. 27

Home .. 283.2.1
Project Info Dialog ... 293.2.1.1

Add New Project ... 303.2.1.2

Project .. 303.2.2
Project Information .. 313.2.2.1

Project Notifications .. 323.2.2.2

Project Dashboard .. 343.2.2.3

Published Projects .. 403.2.2.4

All Projects .. 413.2.2.5

Sources .. 413.2.3
Connectors Drawer ... 423.2.3.1

Create New Connector .. 443.2.3.1.1

Connector Details .. 473.2.3.1.2

Assets Drawer .. 493.2.3.2

Asset Details Drawer .. 513.2.3.3

Collection Details Drawer .. 523.2.3.3.1

Routine Details Drawer ... 553.2.3.3.2

Topic Details Drawer .. 573.2.3.3.3

Aggregates .. 593.2.4
Aggregates Drawer ... 603.2.4.1

Create New Aggregate .. 613.2.4.1.1

Aggregate Details .. 633.2.4.1.2

Aggregate Assets ... 643.2.4.2

Add New Aggregate Source .. 653.2.4.2.1

Aggregate Asset Details Drawer ... 663.2.4.3

Webservices ... 703.2.5
Webservices Drawer ... 713.2.5.1

Create New Webservice .. 723.2.5.1.1

Webservice Details .. 733.2.5.1.2

4

DTS Product Manual © 2023 Realworld Systems B.V.

Table of Contents

Webservice Assets Drawer .. 763.2.5.2

Webservice Asset Details Drawer ... 783.2.5.3

Webservice Stream Operations Drawer .. 793.2.5.3.1

Webservice Routine Details Drawer ... 863.2.5.3.2

Webservice Topic Details Drawer ... 893.2.5.3.3

Left-Side Menu Toolbar ... 943.2.6

3.3 Top Menu Toolbar ... 95

Preferences Menu .. 963.3.1
Webservice Deployers ... 973.3.1.1

Connector Types ... 1043.3.1.2

Notification Senders .. 1093.3.1.3

User Menu ... 1113.3.2

3.4 Filters & Relationships .. 111

3.5 Errors & Warnings .. 114

4. Connectors 117

4.1 Apache Kafka ... 118

Connection Parameters ... 1194.1.1

Types ... 1194.1.2

Topics .. 1204.1.3

Limitations ... 1204.1.4

4.2 MariaDB ... 121

Connection Parameters ... 1214.2.1

Types ... 1224.2.2

Geometry ... 1234.2.3

Tables and Views ... 1254.2.4

Routine Calls ... 1254.2.5

Limitations ... 1264.2.6

4.3 MS SQL Server .. 127

Connection Parameters ... 1274.3.1

Types ... 1284.3.2

Geometry ... 1294.3.3

Tables and Views ... 1314.3.4

Routine Calls ... 1314.3.5

Limitations ... 1334.3.6

4.4 MySQL ... 133

Connection Parameters ... 1344.4.1

Types ... 1344.4.2

Geometry ... 1354.4.3

Tables and Views ... 1374.4.4

Routine Calls ... 1384.4.5

5

DTS Product Manual © 2023 Realworld Systems B.V.

Table of Contents

Limitations ... 1394.4.6

4.5 Oracle ... 139

Connection Parameters ... 1404.5.1

Types ... 1404.5.2

Geometry ... 1414.5.3

Tables and Views ... 1434.5.4

Routine Calls ... 1444.5.5

Limitations ... 1454.5.6

4.6 PostgreSQL .. 146

Connection Parameters ... 1474.6.1

Types ... 1474.6.2

Geometry ... 1494.6.3

Tables and Views ... 1514.6.4

Routine Calls ... 1524.6.5

Limitations ... 1534.6.6

4.7 SAP Hana .. 153

Connection Parameters ... 1544.7.1

Types ... 1544.7.2

Geometry ... 1554.7.3

Tables and Views ... 1564.7.4

Routine Calls ... 1574.7.5

Limitations ... 1584.7.6

4.8 Smallworld .. 159

Connection Parameters ... 1604.8.1

Smallworld Environment .. 1604.8.2

Types ... 1614.8.3

Geometry ... 1634.8.4

Collections ... 1644.8.5

Routine Calls ... 1664.8.6
Registration .. 1664.8.6.1

Stream Results ... 1694.8.6.2

Registration Example .. 1704.8.6.3

Smallworld Client .. 1764.8.7

Limitations ... 1814.8.8

4.9 Web Service ... 181

Connection Parameters ... 1824.9.1

Types ... 1824.9.2

Routine Calls ... 1834.9.3

Limitations ... 1844.9.4

5. Webserv ices 185

6

DTS Product Manual © 2023 Realworld Systems B.V.

Table of Contents

5.1 Types ... 186

5.2 Functionality .. 187

5.3 Specification .. 195

5.4 Access ... 195

5.5 Integration ... 199

Application Server .. 1995.5.1

External Security and Load Balancing ... 2015.5.2

Logging .. 2035.5.3

5.6 Limitations .. 206

6. Technical Guide 207

6.1 Architecture .. 208

Controller ... 2106.1.1

GUI Controller .. 2116.1.2

Producer .. 2126.1.3

Client .. 2136.1.4
Webservice Client ... 2146.1.4.1

Smallworld Client .. 2156.1.4.2

Aggregator .. 2156.1.5

Agent .. 2166.1.6

GUI ... 2176.1.7

CLI .. 2176.1.8

6.2 Communication ... 218

6.3 Types ... 218

6.4 Streams ... 220

6.5 Geometry ... 222

Structure .. 2236.5.1

Corrections .. 2246.5.2

Examples ... 2266.5.3
Simple Point ... 2276.5.3.1

Oriented Point .. 2276.5.3.2

Multi Point .. 2286.5.3.3

Annotation .. 2286.5.3.4

Simple Line String ... 2296.5.3.5

Arc Line String .. 2296.5.3.6

Compound Line String ... 2306.5.3.7

NURBS .. 2316.5.3.8

Multi Line String .. 2326.5.3.9

Polygon ... 2336.5.3.10

Compound Polygon ... 2346.5.3.11

Rectangle ... 2356.5.3.12

7

DTS Product Manual © 2023 Realworld Systems B.V.

Table of Contents

Circle ... 2366.5.3.13

Multi Polygon ... 2376.5.3.14

Geometry Collection .. 2386.5.3.15

6.6 Predicate ... 239

6.7 Aggregation .. 242

6.8 Security ... 246

Outline .. 2476.8.1

Registration and Authentication .. 2486.8.2

Setup .. 2526.8.3

7. Development 255

7.1 Client .. 256

Pre-Built ... 2577.1.1

Java Library ... 2577.1.2
Direct Usage Example ... 2597.1.2.1

Custom Implementation Usage ... 2637.1.2.2

.NET Library .. 2667.1.3
Direct Usage Example ... 2677.1.3.1

Custom Implementation Example ... 2707.1.3.2

Redis/JSON .. 2747.1.4
Registration Command .. 2787.1.4.1

Project Command ... 2807.1.4.2

Connector Command ... 2827.1.4.3

Record Stream Command .. 2847.1.4.4

Execute Remote Command ... 2867.1.4.5

7.2 Producer ... 288

7.3 Project Artifacts ... 288

CONNECTOR_CATEGORY ... 2907.3.1

CONNECTOR_TYPE .. 2917.3.2

NOTIFICATION_SENDER .. 2937.3.3

WEBSERVICE_DEPLOYER ... 2947.3.4

PROJECT_WIP .. 2957.3.5

PROJECT_RESOURCE ... 2967.3.6

PROJECT_OPERATION .. 2977.3.7

CONNECTOR ... 2987.3.8

COLLECTION_RESOURCE .. 3007.3.9

COLLECTION_DETAILS .. 3017.3.10

REMOTE_CALL_RESOURCE .. 3027.3.11

REMOTE_CALL_DETAILS .. 3037.3.12

TOPIC_RESOURCE ... 3047.3.13

TOPIC_DETAILS ... 3057.3.14

AGGREGATE ... 3067.3.15

8

DTS Product Manual © 2023 Realworld Systems B.V.

Table of Contents

WEBSERVICE ... 3077.3.16

PROJECT ... 3087.3.17

PROJECT_STATUS .. 3097.3.18

PRODUCER_STATUS ... 3107.3.19

CONSUMER_STATUS ... 3117.3.20

NotificationConfig ... 3137.3.21

NotificationTarget ... 3137.3.22

AttributeDescriptor ... 3147.3.23

ConstraintDefinition .. 3157.3.24

TypeResource ... 3167.3.25

AggregateSource ... 3167.3.26

AggregateRelationship .. 3177.3.27

WebserviceResource .. 3187.3.28

8. Known Limitations 321

9. Licenses 323

9.1 3rd Party Licenses .. 324

Apache 2.0 .. 3259.1.1

BSD 2-clause .. 3299.1.2

BSD 3-clause .. 3299.1.3

CCO 1.0 .. 3309.1.4

CDDL 1.1 .. 3309.1.5

GPL 2.0 ... 3369.1.6

LGPL 2.1 ... 3419.1.7

MIT .. 3489.1.8

OTNLA ... 3499.1.9

SAP Developer License Agreement .. 3549.1.10

Index 0

Introduction

What is DTS, versions and copyrights

10

DTS Product Manual © 2023 Realworld Systems B.V.

Introduction

1 Introduction

DATA TRANSIT SYSTEM

Version 2023.1.1

Copyright © 2023 Realworld Systems B.V.. All rights reserved.

1.1 Copyrights

Copyright information

© 2023 Realworld Systems B.V.. All rights reserved.

The Software Product described in this documentation may only be used strictly in accordance with
the applicable written License Agreement. The Software Product and Associated Documentation
are deemed to be “commercial computer software” and “commercial computer software

11

DTS Product Manual © 2023 Realworld Systems B.V.

Introduction

documentation,” respectively, pursuant to DFAR Section 227.7202 and FAR Section 12.212, as
applicable, and are licensed with Restricted Rights as identified in the License Agreement, and as
set forth in the “Restricted Rights Notice” contained in paragraph (g) (3) (Alternate III) of FAR
52.227-14, Rights in Data - General, including Alternate III (June 1987).

The information contained in this online publication is the exclusive property of Realworld Systems
B.V.., except as otherwise indicated. You may view, copy and print documents and graphics
incorporated in this online publication (the “Documents”) subject to the following: (1) the Documents
may be used solely for personal, informational, non-commercial purposes; (2) the Documents may
not be modified or altered in any way; and (3) Realworld Systems B.V. withholds permission for
making the Documents or any portion thereof accessible via the Internet. Except as expressly
provided herein, you may not use, copy, print, display, reproduce, publish, licence, post, transmit or
distribute the Documents in whole or in part without the prior written permission of Realworld
Systems B.V..

The information contained in this online publication is subject to change without notice.

The software described in this online publication is supplied under license and may be used or
copied only in accordance with the terms of such license.

The licenses can be found in the Licenses annex of this document.

Trademarks and Registered Trademarks

Apache is a registered trademark or trademark of the Apache Software Foundation in the United
States and/or other countries.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United
States and/or other countries. Docker, Inc. and other parties may also have trademark rights in
other terms used herein.

JBoss is a registered trademark of Red Hat Inc., in the United States and other countries.

Java, WebLogic, Oracle, Oracle Spatial, and Oracle Express are trademarks of Oracle
Corporation, registered in the United States and other countries.

Microsoft and SQL Server are registered trademarks of Microsoft Corporation in the United States
and other countries.

Mongo and MongoDB are registered trademarks of MongoDB, Inc. in the United States and other
countries.

Postgres and PostgreSQL are registered trademarks of the PostgreSQL Community Association of
Canada.

Redis is a trademark of Redis Labs Ltd. Any rights therein are reserved to Redis Labs Ltd. Any use
by Realworld Systems B.V. is for referential purposes only and does not indicate any sponsorship,
endorsement or affiliation between Redis and Realworld Systems B.V..

Smallworld and GE Smallworld are trademarks of the General Electric Company.

324

12

DTS Product Manual © 2023 Realworld Systems B.V.

Introduction

WebSphere is a trademark of International Business Machines("IBM") Corporation, registered in the
United States and other countries.

Other company or product names mentioned in this documentation may be trademarks or
registered trademarks of their respective companies.

1.2 Welcome

About

DTS is a distributed middleware solution for providing real-time access to data and functionality
from various sources and making it available in multiple forms for consumption and execution.

This manual seeks to present and explain all user, administration and development aspects of DTS
and serve as a reference when deploying, configuring and expanding it.

Audience and required skills

This manual is intended for System Administrators, End Users and Developers who will be
interacting with DTS.

The required skill set varies depending on the section. Wherever external knowledge is required, it
will be so noted.

In general, the following skills will be helpful:

Role Tasks Skills

System
Administrator

Deployment and Maintenance Bash command line, Docker, Kubernetes,
Nginx

End User Project Creation and Management,
Day-to-day Operations

Knowledge of the systems that will directly
interact with DTS

Developer Custom Endpoint Development Java / .NET,Redis, MongoDB

Distr ibution forms

PDF, HTML

13

DTS Product Manual © 2023 Realworld Systems B.V.

Introduction

Support

For issues not covered by the manual or any extra information regarding the deployment,
configuration and use of our product, please contact us by email at info@datatransitsystem.com or
through your sales representative.

1.3 Manual Version

This section contains version information regarding this document. Version information regarding
the product itself is available under Release Notes .

Version Date Description

2023.1.1 October 2023 2023.1 Release Manual

2022.1.1 December 2022 2022.1 Release Manual

2021.1.2 January 2022 2021.1 Final Release Manual

2021.1.1 July 2021 2021.1 Beta Release Manual

1.4 Release Notes

Version Information

2023.1 · Apache Kafka Connector

· MariaDB Connector

· Improved Kubernetes Integration

· UI Updates

· Engine Optimizations

2022.1 · .NET Client API

· Administration CLI

13

mailto:info@datatransitsystem.com

14

DTS Product Manual © 2023 Realworld Systems B.V.

Introduction

· MySQL Connector

· UI Updates

· Engine Optimizations

· Webservice extensions

2021.1 · Dashboard

· Aggregation

· Notifications

· Routine Streaming

· Collection Filters

· SAP Hana Connector

· Field Name Customization

· UI Updates

· Bug Fixes

2020.2 First commercial release

Deployment

Administrative guide for deploying DTS

16

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

2 Deployment

DTS is a very flexible software product, built on a distributed architecture and can be deployed in a
number of ways, depending on usage patterns and environmental limitations.

However, the preferred deployment scheme for DTS involves containerization and clustering of the
various components using solutions like Docker™ and Kubernetes®.

While Docker is required as a container platform, Kubernetes is optional as DTS also provides its
own minimal orchestration solution in the form of the DTS Agent .

Orchestrated deployment allows DTS to self-regulate, automatically scale, provide redundancy and
guarantee uptime. For this reason, the orchestrated container deployment is the only type of
deployment we support in production environments.

 For more information on clustered deployment, please see Prerequisites .

 The most turnkey type of DTS deployment uses the Agent and docker-compose. Please see Basic Deployment
for more information.

 For more information on the various DTS components and their containment, please see Architecture .

216

17

18

208

17

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

 For information regarding other types of deployment or special scenarios, please contact us.

2.1 Prerequisites

This section summarizes the prerequisites specific to the containerized deployment of DTS.

Hardware

DTS can be deployed on physical as well as virtual machines. The required resources are highly
dependent on the scale of the deployment (i.e. the planned producer count and types) and the
orchestration choice.

 Please see Basic Deployment for a basic instal lation's requirements or contact us for help in
sizing your own hardware resources.

Operating System

While DTS can be theoretically be deployed on any Operating System that can run Docker™, we
supply all components as Linux®-based images and do the bulk of integration testing on Linux
machines, so a Linux OS is recommended.

Windows™ environments are also fully supported, each release being tested and validated against
them. However, running in DTS component containers in Windows™ requires an extra layer of
virtualization (WSL 2) and may incur a performance penalty.

 In the specific case of using DTS w ith Smallworld® 4.3 producers, we recommend CentOS™ 7 as
a host OS as well as a base for the Smallworld producer images.

 When deploying in Kubernetes®, the platform's own OS restrictions apply, as well as the above
guidelines.

Supported platforms

Kubernetes® is used to manage a cluster of DTS producer containers. To meet the requirements
of a secure DTS deployment, we support Kubernetes running on a Linux® distribution. This
determines the supported platforms for DTS deployments as summarized here.

18

18

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

Third-party products

DTS requires the following third-party products:

Product Note

Docker™ DTS requires at least version 18.01, but 20+ is recommended.

Kubernetes® DTS requires at least version 1.19.

 Not required when deploying w ith DTS Agent orchestration

Java Oracle JDK 8 or OpenJDK 8 is required for running the DTS Agent and
CLI

The Kubernetes documentation website and Docker desktop website include download and release
information, as well as reference information and tutorials.

2.2 Basic Deployment

The easiest way to deploy DTS for testing or production purposes is in a Docker-only environment
using Docker Compose for easy control and configuration and the DTS Agent for orchestration.

This section outlines the requirements and steps involved in setting up such a DTS deployment.

 For information regarding integrating DTS into new or existing orchestrated clusters (e.g. Kubernetes), please
contact us.

Hardware

A DTS standard (minimal) host machine spec is defined as:

· 2 CPUs

· 16 GB RAM

· 100 GB Hard Drive

· 1 Network Card

The recommended host machine spec can vary greatly and is defined by the type and numbers of
containers expected to be running.

216

217

216

https://kubernetes.io/docs/home/
https://www.docker.com/products/docker-desktop

19

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

Host Operating System

Any Windows, Linux or Macintosh operating system that can run a supported Java version and
meets the Docker Minimum Requirements will work. Other operating systems may work, but they
are not tested by DTS.The most widely used operating system for Data Transit System is Linux
and therefore customers should consider it the best tested platform.

Java

The Data Transit System agent will run outside the Docker network (without a container) and
requires a Java 8 Runtime Environment (JRE).

The distributions for OSX and Windows include suitable runtime environments for the specific
operating system.

The distributions for Unix do not include the runtime environment.

If you prefer to use an external runtime or use a Unix operating system, you can choose to install
the full JDK or the JRE only.

You can confirm the installed Java version with the java -version command, for example:

$ java -version
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

When multiple JDK or JRE versions are installed, you need to ensure the correct version is
configured by running the above command as the operating system user that is used to run the
DTS agent.

In the event you have a non-standard location, you need to update the configuration to specify a
specific JDK or JRE installation path.

Docker and Docker Compose

Docker is the containment engine of choice for DTS and is the only one the product is tested with.
An appropriate Docker Engine should be installed on the machine.

 For information on how to install Docker Engine on a specific host OS, please see the Docker Engine installation
instructions

 DTS is supported on Docker versions starting with version 18.01 but the latest version of Docker is advised for all
customers

The most efficient way to configure an entire DTS deployment for a quick start of testing
procedures is using Docker Compose. This should also be installed on the machine.

216

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

20

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

 For information on how to install Docker Compose on a specific host OS, please see the Docker Compose
installation instructions

Docker Images Repository

For easy access to the Docker images specific to the deployment, we recommend creating a
bespoke repository.

This repository can run on the same host machine within a Docker container or can be installed on
a different machine or even in the cloud.

 For local installations, Nexus Repository OSS is the most common option

 The initial DTS images and subsequent updates can be pulled from our central repository and pushed into the
local one

Ports

A standard test deployment requires the following ports to be opened on the host machine:

· The GUI Webapp port (configurable - default is 7875).

· The ICB (Redis) port (configurable - default is 7877).

· The SSH port (22).

· [Optional] For remote debugging, the Artifact Datastore (MongoDB) port (configurable - default is
7879).

Deployment and Configuration

The functional deployment of DTS for testing purposes consists of a directory containing the
following:

agent Home of the DTS Agent component - responsible interfacing the session
management system with the container/cluster platform (in this case Docker).

blades Directory for storing the system's data blades (libraries used for
connecting to various data sources).

cli Directory for the DTS CLI binaries (portable).

licence Directory for storing the product licence certificates.

security Home of the DTS certificate authority - includes scripts for setting up the
security system and generating certificates for new components.

wss Home of the DTS Web Service stacks, which includes the tools, libraries and
work directories used by the system to consume and generate Web Services.

216

118

217

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://www.sonatype.com/nexus/repository-oss

21

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

docker-
compose.yml

The centralized docker-compose configuration for the DTS core containers.

dts-start.sh Script to start the entire system.

dts-stop.sh Script to stop the entire system.

The configuration of the deployment is done in two places:

· docker-compose.yml is used to set up host paths and ports, as well as certain environment
variables used to configure the behavior of core components.

§ Each container definition under services has an image parameter which should point to the
name of the image to be used by the container (as known by Docker).

§ The ports parameter under the dts-redis, dts-mongo and dts-webapp container definitions
allow customizing the mappings of the respective access ports on the host (left side value).

§ The dts-mongo container can be configured to map the mongodata volume to a custom
directory on the host if desired (e.g. for backup purposes). If not mapped, the project data will
be stored in Docker's own storage pattern.

§ The dts-controller container maps the licence directory under the volumes parameter and
can be altered for a custom placement of the licence directory on the host.

§ The dts-gui-controller container maps the blades and wss directories from the host and
can be altered for custom placements of the respective directories.

§ The environment parameter for each container should generally remain unmodified, but
certain environment variables can be added:

o The TZ environment variable can be defined to enforce a specific timezone on each
container (e.g.: - TZ=EEST).

o DTS_DEBUG_LOGGING can be added to any container to activate its verbose output
mode for debugging purposes (e.g.: - DTS_DEBUG_LOGGING=true).

· agent/start-agent.sh is used to set up the Agent's operation mode, connection points and local
paths.

§ DTS_AGENT_MODE can be DOCKER or K8S and determines whether Kubernetes or
Docker will be the platform used. In the case of the standard test deployment, we use
Docker: export DTS_AGENT_MODE=DOCKER

§ DTS_CLUSTER_HOST is the URL that the agent will use to send commands to the
container/cluster platform. In the case of the standard test deployment, we use Docker and
run the agent on the same machine, so we use Docker's default socket: export
DTS_CLUSTER_HOST=unix:///var/run/docker.sock

22

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

§ DTS_REDIS_HOST_NAME is the name or address of the machine that provides access to
the Redis communication platform. In the case of the standard test deployment, it should be
localhost or the IP address of the host machine.

§ DTS_REDIS_PORT is the port that provides access to the Redis communication platform.
In the case of the standard test deployment, this should be the host port mapped in docker-
compose.yml for the dts-mongo container.

§ DTS_HOST_BLADES_DIR is the absolute path to the blades directory of the deployment.

§ Optionally, a default producer image can be defined using DTS_PRODUCER_IMAGE (which
will be used if none is provided in a given connector's definition).

§ Also optionally, the DTS_DEBUG_LOGGING variable can be set to true to enable verbose
output from the agent for debug purposes. This option is also passed on to all producer
containers that the agent starts.

Interaction

After deployment, the entire system can be started with a single command:

<dts_dir> $./dts-start.sh

The system can also be shut down with a single command:

<dts_dir> $./dts-stop.sh

The DTS core components can be started without agent support using:

<dts_dir> $ [sudo] docker-compose up -d

The DTS core components can also be shutdown independently using:

<dts_dir> $ [sudo] docker-compose down

The agent can be started individually using:

<dts_dir>/agent $./start-agent.sh

The agent can also be stopped individually using:

<dts_dir>/agent $./stop-agent.sh

Logs for various containers can be accessed using this command:
<dts_dir> $ [sudo] docker logs --tail=<n_lines> <container_name>

Logs for the current (or last run) agent instance can be found in the
<dts_dir>/agent/agent.log file.

23

DTS Product Manual © 2023 Realworld Systems B.V.

Deployment

User Permissions

In order for the user which will interact with DTS on the host machine to be able to invoke all the
necessary commands and pass enough authority to the agent to perform its tasks, the following are
required:

· The user should have full rwx permissions on all files in the DTS deployment listed above in the
Deployment and Configuration section.

· For the start and stop scripts, as well as the agent to be able to control Docker, either:

§ The user should be part of the docker group on the host machine.

or

§ The user should have sudo permission for the docker, docker-compose and java
commands (with SETENV and, optionally but preferably NOPASSWD).

· For the agent stop script to be able to kill the agent process, either:

§ The user should have sudo permission for the kill command.

or

§ The user should have sudo permission to run the <dts_dir>/agent/stop-agent.sh script, on
which write access for the user can be removed to ensure no alterations are made.

Web UI

Features and worlkflow using the DTS Web UI application

26

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3 Web UI

This section describes the various views and controls in the Web UI, detailing their usage and
provides a reference for project workflows.

· Login

· Workspace

· Left-Side Menu Toolbar

· Top Menu Toolbar

· Errors & Warnings

· Filters & Relationships

3.1 Login

The login form consists of the DTS logo, a username field, a password field, and the login button.

26

27

94

95

114

111

27

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Use the "username" and "password" fields to enter your credentials.

 Press the "sign in" button to proceed to the Workspace view.

3.2 Workspace

The Workspace page displays the Top menu toolbar and the Projects area .

27

95 28

28

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Workspace

 Related topics:
· Top Menu Toolbar
· Projects

3.2.1 Home

In the Workspace view, you can either edit an existing project or add a new project.

Each project is depicted as a project card.

Use the Add new project card to add a new project.

To view information on an existing project, click the info icon . This action will open the Project
Info Dialog .

To open a specific project, click on the corresponding project card. By default, this will take you to
the Project tab located on the Left-Side Menu Toolbar .

The current Project name is displayed at the top of the Top Menu Toolbar, next to the Home button.

95

28

30

29

30 94

29

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Projects Area

3.2.1.1 Project Info Dialog

The Project Info Dialog shows the name, author and version of a Project.

Project Info Dialog

Name The name of the selected project

Created By The author of the selected project (identified by the DTS username)

Working Version The version of the selected project (the version automatically increments
as changes are published)

30

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.2.1.2 Add New Project

 To add a new project, type the project name into the text field and press the add button . This
will create a new project card in the projects view.

 Newly added projects are underlined in the project list:

 • Trying to add a new project with the same name as an existing project triggers an error message pop-up;
 • Leaving the name field empty when creating a new project does not add a new project card;

 • The name field has a 64 character limit; going over the limit triggers an error message pop-up;

3.2.2 Project

The Project view offers general information about a Project.

The view is split into 3 main parts:

31

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

· Project Information

· Project Notifications

· Project Dashboard

3.2.2.1 Project Information

The Project Information Tab contains general information about a Project and allows you to Publish
or Delete it.

Project Information Tab

31

32

34

32

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Name The name of the selected project

Created By The author of the selected project (identified by the DTS username)

Working Version The version of the selected project (the version automatically increments
as changes are published)

Start on Request Automatically start the project when a consumer request for it is registered.
If disabled, projects can only be started from the DTS GUI and CLI

Publish Environment The preferred environment for which you want to publish the project

 DEV
Development Environment

 TEST
Test Environment

 PROD
Production Environment

 Publish Publish the project

 Delete Delete the project

3.2.2.2 Project Notifications

The Project Notifications Tab provides an overview of where notifications are sent and the
available features.

A notification is an email message that DTS displays outside the UI to provide the user with
reminders or other timely information.

33

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Project Notifications Tab

To choose a Notification Sender , select one from the Notification Sender drop-down.

 If you want to add a new Notification Sender, please use the Notification Senders dialog.

To add a new recipient for your notifications, click on the Target Email Address input field and type
a valid email

address. Next, add the recipient to the list by clicking the Add button or by pressing the Enter
button on your

keyboard.

 Please note that i f the email address is invalid, the Add button w il l remain disabled.

The available Target Emails are displayed as a list below the Target Email Address input field.

109

34

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

To remove a Target email Address, click on the Delete button.

To view the options available for a specific Target Email Address, simply select one from the list.

Use the toggles provided to turn alerts on or off.

Notification Sender The email address from which the notifications are to be sent

Target Email Address The email address of the notifications recipient

Options Toggle preferences for specific alerts

Component Failure Toggle to receive alerts in case of a component failure

Agent Failure Toggle to receive alerts in case of an agent failure

License Limit
Reached

Toggle to receive alerts when the license limit has been reached

3.2.2.3 Project Dashboard

The Project Dashboard Tab provides detailed information about the Project and its available assets.

This view has separate sections for Project Status and Connectors Status, as well as detailed
tables for the Producers, Aggregators and Consumers available for the selected project.

Project Status Section

This section provides general information about the status of the selected project.

Project Status Section

35

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Project Status
Buttons

The Stop, Reload and Start buttons can be used to Stop, Reload or Start a
project.

Stop Unloads the Project from the Controller, stops all of its producers and
aggregators and notifies all of its consumers that the project is has closed.

Reload Performs the Stop action followed by the Start action, but notifies
consumers that they should reconnect.

 This action should be used to update the running version of a republished
project, as it has the least impact on connected consumers.

Start Loads the latest published version of the project into the Controller and
starts all of its baseline producers and aggregators.

Project Status This can either be Active or Inactive

Published version The published version of the selected project (the version automatically
increments as changes are published)

Running version The version of the selected project that is currently running. If the running

version and the published version of the project are different, the icon
will be present.

Totals

 Total Calls The total number of Routine Calls served by the project

 Total Streams The total number of Streams served by the project

 If a project is Active, the Start button is disabled, the project can only be stopped or reloaded.
 If a project is Inactive, the Stop and Reload buttons are disabled, the project can only be started.

Connectors Status Section

This section provides a real-time visual interpretation of the number of Active Calls, Active Streams,
Total Calls and Total Streams registered on the active producers for each connector at any given
time through a dedicated chart.

Each color-coded section of a chart represents a connector.

 If you hover over a section of a chart a tool-tip w il l appear that contains the name of the
connector fol lowed by the number of Active Calls, Active Streams, Total Calls and Total Streams
registered on all of i ts producers.

In the center of each chart you can find the total number of Active Calls, Active Streams, Total Calls
or Total Streams registered on the active producers for all the connectors.

 If no producers are yet available for the connectors or there aren't any active calls or streams , the
total number w il l not be available and the number w il l be replaced w ith N/A.

36

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

The chart legend is interactive. Clicking on a Connector name will take you to its corresponding
table in the Producers section.

Connectors Status Section

 Topic Operations (Poll/Push) register as Calls, while Subscribed topics appear as Streams.

Producers Section

This section provides a real-time visual interpretation of each of the active producers from a project
connector.

Each Connector has its own section (table) that contains information about its corresponding
producers.

Producers Table

The Start Time, Active Calls, Active Streams, Total Calls and Total Streams table headings are
interactive.

Click on them to sort the producers by your chosen criteria in ascending or descending
order.

37

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

This section provides a real-time visual interpretation of the number of Active Calls, Active
Streams, Total Calls and Total Streams registered on the active producers at any given time
through a dedicated chart.

To activate the chart, click on any of the following table headings: Active Calls, Active Streams,
Total Calls, Total Streams.

Each color-coded section of the chart represents an active producer, identified by its component ID.

 If you hover over a section of a chart a tool-tip w il l appear that contains the component ID of the
producer fol lowed by the number of Active Calls, Active Streams, Total Calls and Total Streams
registered on it.

In the center of each chart you can find the total number of Active Calls, Active Streams, Total Calls
or Total Streams registered on the active producers for a specific connector. The totals are also
available at the bottom of the table under their corresponding sections.

 If no producers are yet available or there aren't any active calls or streams , the total number w il l
not be available and the number w il l be replaced w ith N/A.

Connector Displays the name of the connector

Component ID Displays the Component ID of a producer. (color-coded to chart)

Start Time Displays the exact time and date of when the producer was started

Session Name Displays the session name of a producer

Active Calls Displays the number of Active Calls for a specific producer

Active Streams Displays the number of Active Streams for a specific producer

Total Calls Displays the number of Total Calls for a specific producer

Total Streams Displays the number of Total Streams for a specific producer

Status Displays the status of a producer. This can either be Active, or Starting (if
the producer has just been added).

Stop Click on the Stop button to stop a specific producers.

 A manually stopped producer w il l not be replaced by the Control ler.

Add New Producer Click on the Add button to start a new producer for the Connector.

 A manually started producer w il l not be subject to automatic scale-downs
by the Control ler, but w il l be automatically replaced if i t becomes
unresponsive.

Aggregators section

38

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

This section provides a real-time visual interpretation of each of the active aggregators at any given
time through a dedicated chart.

Aggregators Table

The Start Time, Active Calls, Active Streams, Total Calls and Total Streams table headings are
interactive.

Click on them to sort the aggregators by your chosen criteria in ascending or descending
order.

This section provides a real-time visual interpretation of the number of Active Calls, Active
Streams, Total Calls and Total Streams registered on the active aggregators at any given time
through a dedicated chart.

To activate the chart, click on any of the following table headings: Active Calls, Active Streams,
Total Calls,Total Streams

Each color-coded section of the chart represents an active aggregator, identified by its component
ID.

 If you hover over a section of a chart a tool-tip w il l appear that contains the component ID of the
aggregator fol lowed by the number of Active Calls, Active Streams, Total Calls and Total Streams
registered on it.

In the center of each chart you can find the total number of Active Calls, Active Streams, Total Calls
or Total Streams registered on the active aggregators. The totals are also available at the bottom of
the table under their corresponding sections.

 If no aggregators are yet available or there aren't any active calls or streams , the total number
w il l not be available and the number w il l be replaced w ith N/A.

Aggregators Displays the name of the table

Component ID Displays the Component ID of an aggregator. (color-coded to chart)

Start Time Displays the exact time and date of when the aggregator was started

Session Name Displays the session name of an aggregator

39

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Active Calls Displays the number of Active Calls for a specific aggregator

Active Streams Displays the number of Active Streams for a specific aggregator

Total Calls Displays the number of Total Calls for a specific aggregator

Total Streams Displays the number of Total Streams for a specific aggregator

Consumers section

This section provides a real-time visual interpretation of each of the active consumers at any given
time through a dedicated chart.

Consumers Table

The Start Time, Active Calls, Active Streams, Total Calls and Total Streams table headings are
interactive.

Click on them to sort the consumers by your chosen criteria in ascending or descending
order.

This section provides a real-time visual interpretation of the number of Active Calls, Active
Streams, Total Calls and Total Streams registered on the active consumers at any given time
through a dedicated chart.

To activate the chart, click on any of the following table headings: Active Calls, Active Streams,
Total Calls,Total Streams

Each color-coded section of the chart represents an active consumer, identified by its component
ID.

 If you hover over a section of a chart a tool-tip w il l appear that contains the component ID of the
consumer fol lowed by the number of Active Calls, Active Streams, Total Calls and Total Streams
registered on it.

In the center of each chart you can find the total number of Active Calls, Active Streams, Total Calls
or Total Streams registered on the active consumers. The totals are also available at the bottom of
the table under their corresponding sections.

40

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 If no consumers are yet available or there aren't any active calls or streams , the total number w il l
not be available and the number w il l be replaced w ith N/A.

Consumers Displays the name of the table

Component ID Displays the Component ID of a consumer. (color-coded to chart)

Start Time Displays the exact time and date of when the consumer was started

Session Name Displays the session name of a consumer

Active Calls Displays the number of Active Calls for a specific consumer

Active Streams Displays the number of Active Streams for a specific consumer

Total Calls Displays the number of Total Calls for a specific consumer

Total Streams Displays the number of Total Streams for a specific consumer

3.2.2.4 Published Projects

The Published Projects Tab offers information about the status of your Published Projects.

Name The name of the selected project

 Active
Shows that the status of the project is active

 Inactive
Shows that the status of the project is inactive

 Selecting a project from the l ist w il l open the Project Dashboard tab.34

41

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 The status information is available for Published Projects only.

3.2.2.5 All Projects

The All Projects Tab lists all the projects available.

 Selecting a project from the l ist w il l open the Project from where you left off or the Project
Information tab for newly created projects.
 The l ist is available for al l projects, including Published Projects.

3.2.3 Sources

The Sources view shows the Datasource Connections included in a Project, their available assets
and those assets' structure. as well as providing functional interactions with them.

The view is split into 3 main parts:

31

42

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Sources View

1. Connectors Drawer

2. Assets Drawer

3. Asset Details Drawer

3.2.3.1 Connectors Drawer

The Connectors Drawer lists the Datasource Connectors currently defined in the Project as a list of
Connector Cards. From here, you can add more Datasource Connectors or interact with the
existing ones.

42

49

51

43

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Connectors Drawer

44

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

To add a new Connector, click on the Add Button . This will open the Create New

Connector dialog.

To edit or view details for a specific Connector Instance, click on the Edit Button on the
respective card . This will open the Connector Details dialog.

The selected connector has a blue background. Disabled connectors have a gray background. To
enable or disable a connector go to the Connector Details dialog.

Selecting a Connector Card w il l update the Assets Drawer w ith the l ist of available assets for
that particular Datasource.
 Al l connectors are enabled by default.

 Activating a Connector Card triggers a background update operation that might generate
messages, errors or warnings. To read more about this subject go to Errors & Warnings .

3.2.3.1.1 Create New Connector

The Create New Connector dialog allows you to create a new Datasource Connection for your
Project.

44

47

47

49

114

45

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Add New Connector Dialog

Initially, you will be presented with only two fields:

Connector Name The name given to the Datasource Connector (must be unique within the
Project)

Connector Type The type of Datasource Connector

Startup Replicas The initial number of instances (producers) that should be started for the
Connector when the Project is booted.

CPU Shares The priority for CPU time for instances (producers) of this connector. This is
a Docker-specific parameter and its default value is 1024.

46

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Connector Types are defined using the Connector Types Dialog

 For more information regarding Docker CPU Shares, please see the relevant Docker
documentation.

After choosing a Connector Type, the dialog will show more options:

Add new connector Dialog - Oracle

104

https://docs.docker.com/config/containers/resource_constraints/#cpu
https://docs.docker.com/config/containers/resource_constraints/#cpu

47

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Environment Type The type of environment the connector will be published in

Connection
Parameters

The parameters required to connect to the Datasource implied by the
Connector Type

To add a new Connector, click on the Add button.

 The fields that appear in the Connection Parameters area w il l depend on the Category of the
Connector Type and can be explored in the respective Connector 's Connection Parameters.

3.2.3.1.2 Connector Details

The Connector Details dialog shows information about a given Datasource Connector and allows
editing certain properties, as well as removing it from the Project.

118

48

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Connector Details Dialog

Enabled Choose if the connector is enabled or disabled (default : enabled)

 Disabled connectors w il l have no instances (producers) started when the Project boots up.

Type The type of Datasource Connector (unmodifiable)

 Connector Types are defined using the Connector Types Dialog 104

49

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Startup Replicas The initial number of instances (producers) that should be started for the
Connector when the Project boots up.

CPU Shares The priority for CPU time for instances (producers) of this connector. This
is a Docker-specific parameter and its default value is 1024.

 For more information regarding Docker CPU Shares, please see the relevant Docker
documentation.

Environment type The type of environment the connector will be published in

Connection
Parameters

The parameters required to connect to the Datasource implied by the
Connector Type

 The fields that appear in the Connection Parameters area w il l depend on the Category of the
Connector Type and can be explored in the respective Connector 's Connection Parameters

Delete Remove the Datasource Connector from the Project

3.2.3.2 Assets Drawer

The Assets Drawer shows the available assets for the Datasource selected in the Connectors
Drawer as a list of cards and allows you to search and filter them as well as include or exclude
them from the Project.

Items in the Asset Drawer can be either Collections (tables, views, etc.), Routines

 (methods, procedures, functions, etc.) or Topics .

Depending on the Connector chosen, the asset type availability may differ:

· All available asset type icons are displayed in black

· Unavailable asset type icons are displayed in light gray

· Selected asset type icons are displayed with a blue border

 Multiple asset type icons can be selected at a time to fi l ter i tems accordingly. However, at least
one of the available asset types must remain selected.

118

42

https://docs.docker.com/config/containers/resource_constraints/#cpu
https://docs.docker.com/config/containers/resource_constraints/#cpu

50

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Assets Drawer

51

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Show only selected toggle Shows only the items currently included in the Project

 Collections toggle Shows the available collections

 Routines Toggle Shows the available routines

Topics Toggle
Shows the available topics

Search/ Filter bar Search for a specific item by name and owner

Owners Drop-down Filters available items by their owner:

· -- All -- : Displays all items (for all owners) - this is the
default setting

· -- None -- : Displays only items that have no declared
owner

· [Owner name entry] : Displays only items with that specific
owner

Additionally, the owner is displayed on each item card as a
blue text button. Clicking on this button will filter all items by
that specific owner.

Assets can be included in or excluded from the Project by using the Enable Button on each
card.

Assets can be reloaded from the source metadata using the Reload Button on each card.

 Selecting a resource card w il l open the Asset Details Drawer .

 Activating a resource card triggers an operation that might generate messages, errors or
warnings. To read more about this subject go to Errors & Warnings .

3.2.3.3 Asset Details Drawer

The Asset Details Drawer shows details about the Asset currently selected in the Assets
Drawer . Depending on the type of Asset that is selected, the Asset Details Drawer can present
in three ways:

51

114

49

52

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

1. Collection Details Drawer
2. Routine Dettails Drawer
3. Topic Details Drawer

3.2.3.3.1 Collection Details Drawer

The drawer allows you to see the Fields of the selected Collection.

52

55

57

53

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Collections Details Drawer

Native Name Displays the native name of the selected collection (i.e. its full given
name in the source data model)

Fields Displays the fields (columns) available in the collection

54

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Fields

 A blue field indicates that the field is included in the Project.
 A gray field indicates that the field is available but not included in the Project.

To edit a field, or view the available information about the field from the Project simply click on the
field to expand.

To close the field information window click on the close icon.

The Fields container also presents 4 buttons:

 Deselect All
Removes all the fields available

 Select All
Includes all the fields available

 Show Custom Names
Will show the fields' DTS Names in the Fields container's tiles.

 Show Native
Identifiers

Will show the fields' Native Identifiers in the Fields container's tiles.

 Show Custom names and Show Native Identifiers can be active at the same time, and at least one
of them needs to be active.

 A blue background of an input field indicates that the field is read-only and its contents cannot be
modified.
 A white background of an input field indicated that the value of the field can be modified.

To remove a field from the Project simply click on the delete icon . The field will become gray.

To add a field to a Project simply click on the gray field to change its state.

If the field is being used by another resource in the project, it cannot be removed, and an Alert
Dialog will appear on the screen.

55

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Alert Dialog

Filters

This section allows you to set up, edit or remove fundamental filters on the collection asset.

A fundamental filter will only allow DTS Clients to consume records that match the filter's clauses.
Any query made on the collection through DTS will be combined with the fundamental filter before
being applied in the data source.

 Add Filter
Opens the Insert Filter dialog, allowing you to add a complex filter

 Edit Filter
Opens the Edit Filter dialog, allowing you to edit an existing filter

 Remove Filter
Removes an existing filter

 For more information about fi l ters, please check the Fil ters section.

3.2.3.3.2 Routine Details Drawer

The drawer allows you to see the Arguments and Results of the selected Routine.

111

56

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Routine Details Drawer

 Show Custom
Names

Will show the arguments'/results' DTS Names in the Fields
container's tiles.

 Show Native
Identifier

Will show the arguments'/results' Native Identifiers in the Fields
container's tiles.

Streamy Routines

57

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

If a Routine is Streamy (i.e. it returns a Stream), the Streamy icon will appear in the Results
section.

Streamy routine

 A blue background of an input field indicates that the field is read-only and its contents cannot be
modified.
 A white background of an input field indicated that the value of the field can be modified.
 To edit an argument or a result, or view the available information about them from the Project
simply cl ick to expand.
 To close the information w indow click on the icon.

3.2.3.3.3 Topic Details Drawer

The drawer offers details about the selected Topic.

58

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Topic Details Drawer

59

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Native Name Displays the native name of the selected topic (i.e. its full given name
in the source data model)

Partitions Displays the partitions available in the topic

Key Type Select key type (STRING or BYTE VECTOR)

Message Type Select message type (STRING or BYTE VECTOR)

 Key Type and Message Type define how keys and messages w il l be serial ized and deserial ized
when pushed or polled from the Topic respectively.

Read Enabled Enable reading (polling) from the selected Topic.

Write Enabled Enable writing (pushing) to the selected Topic.

Properties Allows you to add or change connection properties for a specific topic

 The properties field accepts only one key=value property per l ine. Typing errors w il l trigger a
warning.
The label becomes red when the property fi le is invalid, and blue when it becomes valid.

 Read/Write Enabled controls affect al l DTS consumers that interact w ith the Topic and also reflect
in the operations available for generated Webservices .

 At least one of the two methods (Read or Write) has to be enabled.
 If both methods are disabled by the user, the topic w il l be automatically removed from the
project.

3.2.4 Aggregates

The Aggregates view shows the Aggregate Connections included in a Project, their available assets
and those assets' structure. as well as providing functional interactions with them.

The view is split into 3 main parts:

89

60

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

1. Aggregates Drawer

2. Aggregate Assets

3. Aggregate Details Drawer

 For technical information regarding the structure, rules and l imitations of Aggregates, please see
the Aggregation Technical Guide .

3.2.4.1 Aggregates Drawer

The Aggregates Drawer lists the Aggregates currently defined in the Project as a list of Aggregate
Cards.

From here, you can add more Aggregates or interact with the existing ones.

60

64

66

242

61

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

To add a new Aggregate, click on the Add Button . This will open the Create New Aggregate
dialog.

To edit or view details for a specific Aggregate Instance, click on the Edit Button on the
respective card . This will open the Aggregate Details dialog.

 Selecting a Connector Card w il l update the Aggregate Assets w ith the l ist of assets for that
particular Aggregate.

3.2.4.1.1 Create New Aggregate

The Create New Aggregate dialog allows you to create a new Aggregate for your Project.

61

63

64

62

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Create new Aggregate dialog

To create a new Aggregate, you must provide a Name and the Main Source Asset.

Native Name The name given to the Aggregate (must be unique within the Project)

Connector The Connector which contains the Main Source

Source Allows you to choose a source from the Connector to be the Aggregate's
Main Source Asset

To add a new Aggregate, click on the Add button.

63

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 The sources that appear in the Sources area w il l depend on the Connector chosen.
Only assets that have been included in the Project in the Sources->Assets Drawer will be available.

 For more information regarding Aggregate structure and Main Sources, please see the
Aggregation Technical Guide

3.2.4.1.2 Aggregate Details

The Aggregate Details dialog shows information about a given Aggregate and allows you to remove
it from the Project.

Aggregate details dialog

Native Name The name of the Aggregate (unmodifiable)

Connector The name of the Connector containing the Main Source(unmodifiable)

Source The name of the Main Source (unmodifiable)

Delete Remove the Aggregate from the Project

49

242

64

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.2.4.2 Aggregate Assets

The Aggregate Assets Drawer shows the source assets in use by the Aggregate selected in the
Aggregates Drawer as a list of cards.

Items in the Asset Drawer can be either Collections (tables, views, etc.) or Routines
 (methods, procedures, functions, etc.).

The first item (visually separated) will always be the Main Source of the Aggregate.

Aggregate Assets Drawer

To add a new Aggregate Source, click on the Add Button . This will open the Add new
Aggregate Source dialog.

Any source asset, other than the Main Source, can be removed from the Aggregate by clicking the

Remove Button . This will also remove all relationships that target the source.

60

65

65

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 For more information regarding Aggregate structure, please see the Aggregation Technical
Guide .

3.2.4.2.1 Add New Aggregate Source

The Add New Aggregate Source dialog allows you to add a new Source Asset for your Aggregate.

Add new Aggregate Source dialog

242

66

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

To add a new Aggregate Source, click on the Add button.

Connector The name of the Connector that contains the Asset

Source Type Allows you to choose a source type from the drop-down. The options are
Collections or Routines

Source Allows you to choose from assets that match the Connector and Source
Type

3.2.4.3 Aggregate Asset Details Drawer

The Asset Details Drawer shows details about the Source Asset currently selected in the
Aggregate Assets .

Please see the Aggregation Technical Guide for an explanation of Aggregate structure, sources
and relationships.

64

242

67

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Aggregate details drawer

Native Name Displays the native name of the selected Source Asset (i.e. its full
given name in the source data model)

68

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Fields For Collection Assets: displays the fields (columns) available in the
collection

For Routine Assets: displays the outputs of the Routine

 For simplicity, the rest of the page w il l refer to these items as fields,
regardless if they are collection fields/columns or routine
outputs/results.

Fields

 A blue field indicates that the field is included in the Aggregate.
 A gray field indicates that the field is available but not included in the Aggregate.

To edit a field, or view the available information about the field simply click on the field to expand.

To close the field information window click on the Close icon.

 Deselect All
Excludes all fields from the Aggregate, except fields that are involved
on the parent side of existing relationships.

 Select All
Includes all the available fields in the Aggregate.

 Show Custom Names
Will show the fields' DTS Names in the Fields container's tiles.

 Show Native
Identifier

Will show the fields' Native Identifiers in the Fields container's tiles.

 Show Custom names and Show Native Identifiers can be active at the same time, and at least one
of them needs to be active.

 A blue background of an input field indicates that the field is read-only and its contents cannot be
modified.
 A white background of an input field indicated that the value of the field can be modified.

To remove a field from the Aggregate simply click on the delete button. The field will become
gray.

To add a field to an Aggregate simply click on the gray field to change its state.

If the field is used in a relationship in the current Aggregate, it cannot be removed and an Alert
Dialog will appear on the screen.

69

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Alert Dialog

Filters

This section allows you to set up, edit or remove fundamental filters on the source asset.

For Aggregates, fundamental filters are used to add static/constant terms to source asset queries.

 Add Filter
Opens the Insert Filter dialog, allowing you to add a complex filter

 Edit Filter
Opens the Edit Filter dialog, allowing you to edit an existing filter

 Remove Filter
Removes an existing filter

 For more information about fi l ters, please check the Fil ters section.

Relationships

The Relationships sections allows you to Add, Remove and Edit relationships between Aggregate
sources.

111

70

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Aggregate Relationships Section

To add a new Relationship, click on the Add Button . This will open the Add Relationship
dialog.

To edit or view details for a specific Relationship, click on the Edit Button on the respective
card . This will open the Edit Relationship dialog.

To delete an entry, click the Delete button.

 For more information about Relationships, please check the Fil ters & Relationships section.

3.2.5 Webservices

The Webservices view shows the DTS webservices created for a Project and the assets they
expose. From here, you can create new webservices, choose what assets to include and how they
will be accessed. This is also where you deploy webservices to an Application Server.

The view is split into 3 main parts:

111

71

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Webservices View

1. Webservices Drawer

2. Webservice Assets Drawer

3. Webservice Asset Details Drawer

 For technical information regarding DTS Webservices, please see the Webservices page of this
manual.

3.2.5.1 Webservices Drawer

The Webservices Drawer lists all the DTS Webservices currently defined in the Project as a list of
cards. From here you can create more Webservices or interact with existing ones.

71

76

78

186

72

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Webservices Drawer

To add a new webservice, click on the Add button . This will open the Create New
Webservice dialog.

To edit or view details for a specific webservice, click on the Edit button . This will open the
Webservice Details dialog.

Selecting a webservice card w il l open the Webservice Assets Drawer .

 Activating a webservice card triggers an operation that might generate messages, errors or
warnings. To read more about this subject go to Errors & Warnings .

3.2.5.1.1 Create New Webservice

The Create New Webservice dialog allows you to create new DTS Webservices to expose assets
included in the current Project.

72

73

76

114

73

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Create New Webservice Dialog

Webservice type Select the type for the new webservice (REST/SOAP)

Endpoint Name Enter the endpoint name for the new webservice

Add webservice Click the button to add the new webservice. A new webservice card will be
added to the Webservices Drawer

3.2.5.1.2 Webservice Details

The Webservice Details dialog shows basic information about a given webservice and allows you
to deploy or delete it.

71

74

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Webservice Details Dialog - Download

75

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Webservice Details Dialog - Upload

Address Element Due to particularities of various deployment platforms (Application Servers),
an extra element is required in the service's base URL. By default, it is
"app", but can be customized here.

Base URL Shows the base URL the service will be accessible at (view-only)

Deploy For The environment this deployment targets

Deployment Type How the service should be deployed

Download The service will be packaged as a WAR and presented as a browser
download on the Download WAR button

76

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Upload The service will be automatically deployed the selected Deployer upon
clicking the Deploy button

Delete Delete the Webservice from the Project

 Webservice Deployers are configured using the Webservice Deployer Dialog

3.2.5.2 Webservice Assets Drawer

The Webservice Assets Drawer shows all the assets currently included in the Project as a list of
cards and allows you to search and filter them as well as include or exclude them from the
Webservice.

Items in the Asset Drawer can be either Collections (tables, views, etc.), Routines

(methods, procedures, functions, etc.), Topics or Aggregates .

97

77

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Webservice Assets Drawer

78

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Show only selected
toggle

Shows only the items currently included in the Webservice

 Collections toggle
Shows the collections

 Routines Toggle
Shows the routines

 Topics Toggle
Shows the topics

 Aggregates Toggle
Shows the aggregates

Search/ Filter bar Search for a specific item

Connectors drop-down · -- All -- : Displays all items (for all connectors) - this is the default
setting

· Aggregate: Displays only aggregates

· [Connector name entry]: Displays only items associated with a
specific connector

Additionally, the connector is displayed on each item card as a blue
text button. Clicking on this button will filter all items by that specific
connector.

 Selecting a resource card w il l open the Webservice Asset Details Drawer .

 Activating a resource card triggers an operation that might generate messages, errors or
warnings. To read more about this subject go to Errors & Warnings .

3.2.5.3 Webservice Asset Details Drawer

Depending on the selected resource type, the Webservices details drawer has two different
presentations:

· Webservice Stream Operations Drawer (for Collection and Aggregate Resources);

· Webservice Routine Details Drawer (for Routines)

· Webservice Topic Details Drawer (for Topics)

78

114

79

86

89

79

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.2.5.3.1 Webservice Stream Operations Drawer

When a Collection or Aggregate is selected in the Webservice Assets Drawer , the
Details Drawer will show all the options for configuring Webservice operations that allow clients to
interact with streams on that resource.

This allows fine tuning of the interface by which data from the resource is accessed using the
Webservice.

Webservices View with Stream Operations Drawer

This section is the master control for all stream methods on this collection.

76

80

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Native Name Shows the full native name of the selected Resource (view-only)

URL Prefix The URL element(s) that will be used to point to WS methods for this
collection

 The default value of URL Prefix is [CONNECTOR_NAME]/[COLLECTION_NAME]

 The URL Prefix only identifies the targeted collection w ithin the Webservice. To access a
particular Stream Method, more elements must be added to the URL as described in the next
paragraphs.

Open Stream by Query

This section provides options for the Webservice method that will open a stream on the selected
resource using a query based on in-line parameter values provided in the URL (i.e. a REST GET
request)

Open Stream by
Query

Toggles whether this method will be included in the Webservice

Query Parameters Allows you to choose which fields you want to make available as query
parameters within the GET method URL

81

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Only fields that are compatible w ith URL parametrization w il l be l isted
(i.e. variants of STRING and INTEGER types)

GET URL Shows what the complete URL for calling the method will look like (view-
only)

 Al l the parameters in the GET URL (after '?') are optional. Any combination can be used. If none
are included, a stream spanning al l records provided by the resource w il l be created.

 This method is only available for REST services, as SOAP does not al low URL parameters.

Open Stream by Predicate

This section provides options for the Webservice method that will open a stream on the selected
resource using a query based on a DTS Predicate object which will be included in the request
body (i.e. a REST POST or SOAP request).

Open Stream by
Predicate

Toggles whether this method will be included in the Webservice

Method Name The name you want the method to be accessed with (default "stream-with-
pred")

POST URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

239

82

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

Get Records From Stream

This section provides options for the Webservice method that will request records from an open
stream.

Get Records From
Stream

Shows if the method is included or not. This cannot be manually toggled,
instead it will be on if any of the Open Stream methods are included and off
otherwise.

Method Name The name you want the method to be accessed with (default "stream-get")

GET URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

 The Method always has the same 2 parameters: stream_id and dts__size, which are fed inl ine for
REST GET requests and w ithin the body for SOAP requests. The stream_id parameter is mandatory,
while dts__size is considered 1 if missing.

83

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Get Records With Inline Parameters

This section provides options for the Webservice method that will execute a one-time query on the
resource based on in-line parameter values provided in the URL (i.e. a REST GET request)

Get Records by Query Toggles whether this method will be included in the Webservice

Method Name The name you want the method to be accessed with (default "records")

Query Parameters Allows you to choose which fields you want to make available as query
parameters within the GET method URL

 Only fields that are compatible w ith URL parametrization w il l be l isted
(i.e. variants of STRING and INTEGER types)

GET URL Shows what the complete URL for calling the method will look like (view-
only)

 Al l the parameters in the GET URL (after '?') are optional. Any combination can be used. If none
are included, the first [dts__size] records provided by the resource w il l be returned.

 This method is only available for REST services, as SOAP does not al low URL parameters.

84

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 This method is equivalent to and a shortcut for opening a stream w ith the same parameters,
making a records request of the desired size and closing the stream.

 The dts__size parameter is always available (i f not used, a single record w il l be requested).

Get Records by Predicate

This section provides options for the Webservice method that will execute a one-time query on the
selected resource based on a DTS Predicate object and a given size which will be included in
the request body (i.e. a REST POST or SOAP request).

Get Records by
Predicate

Toggles whether this method will be included in the Webservice

Method Name The name you want the method to be accessed with (default "records-with-
pred")

POST URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

 This method is equivalent to and a shortcut for opening a stream w ith the same Predicate, making
a records request of the desired size and closing the stream.

239

85

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 The size parameter is considered to be 1 if missing.

Get Record by Key

This section provides options for the Webservice method that will execute a one-time query on the
selected resource and return the first record found. It should be configured to use a unique field.

Get Record by Key Toggles whether this method will be included in the Webservice

Key Field The field that will be used as key for finding records

 Only fields that are compatible w ith URL parametrization w il l be l isted
(i.e. variants of STRING and INTEGER types)

GET URL Shows what the complete URL for calling the method will look like (view-
only)

 One and only one field can be selected. If the resource has a declared primary key formed of a
single field, i t w il l be pre-selected.

 This method is only available for REST services, as SOAP does not al low URL parameters.

 This method is equivalent to and a shortcut for opening a stream w ith the key parameter, making
a one record request and closing the stream.

86

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 To read more about the DTS URL format, see Webservice Access

3.2.5.3.2 Webservice Routine Details Drawer

When a Routine is selected in the Webservice Assets Drawer, the Details Drawer will show the
options for configuring the Webservice Method that calls the Routine.

Webservices View with Method Details Drawer

The following details are available for every routine:

195

87

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Native Name Shows the full native name of the selected Routine (view-only)

Operation Name The name you want the method to be accessed with (by default, it will be the
a URL and Java friendly adaptation of the Native Name)

Request Type Toggles the request Type (GET or POST)

POST URL Shows what the complete URL for calling the method will look like (view-
only)

88

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Query Params Allows you to choose which fields you want to make available as query
parameters

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 GET is only available when all the input parameters of the routine can be codified as URL Query
Parameters. By default, GET is set wherever possible.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

If the selected routine is "streamy" (i.e. returns a record stream), a method to get records from the
resulting stream is necessary, so one more panel will be available:

Here, the SOAP Method Name / REST URL element of that method can be customized.

89

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.2.5.3.3 Webservice Topic Details Drawer

When a Topic is selected in the Webservice Assets Drawer, the Details Drawer will show the
options for configuring the operations available for interacting with the Topic.

Webservices- Topic Details Drawer

Native Name Shows the full native name of the selected Resource (view-only)

URL Prefix The URL element(s) that will be used to point to WS methods for this topic

90

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Subscribe

This section provides options for the Webservice method that will subscribe to the selected topic
using the in-line parameter values provided in the URL (i.e. a REST GET request)

Subscribe Toggles whether this method will be included in the Webservice

Query Parameters A non-modifiable list of available query parameters.

 At present, only the group_id parameter is available for use in this operation. To

specify other parameters, please use Subscribe w ith Properties.

 If the group_id is omitted, DTS will generate a temporary one for this subscribe
action.

GET URL Shows what the complete URL for calling the method will look like (view-
only)

 This method is only available for REST services, as SOAP does not al low URL parameters.

Subscribe with Properties

91

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

This section provides options for the Webservice method that will subscribe to the selected topic
using specific properties which will be included in the request body (i.e. a REST POST or SOAP
request).

Subscribe with
Properties

Toggles whether this method will be included in the Webservice

Method Name The name you want the method to be accessed with (default "subscribe-
props")

POST URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

Poll

92

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

This section provides options for the Webservice method that will request records from a given
topic.

Poll Shows if the method is included or not. This cannot be manually toggled,
instead it will be on if any of the Subscribe methods are included and off
otherwise.

Method Name The name you want the method to be accessed with (default "poll")

GET URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

 The Method always has the same 2 parameters: stream_id and timeout, which are fed inl ine for
REST GET requests and w ithin the body for SOAP requests.
 The stream_id parameter is mandatory, while timeout w il l use the default value (configured in the
connector) i f missing.

Push

93

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

This section provides options for the Webservice method that will read a message from the
selected Topic.

Push Toggles whether this method will be included in the Webservice

Method Name The name you want the method to be accessed with (default "push")

POST URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

Push Many

94

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

This section provides options for the Webservice method that will read multiple messages from the
selected Topic.

Push Many Toggles whether this method will be included in the Webservice

Method Name The name you want the method to be accessed with (default "push-
many")

POST URL Shows what the complete URL for calling the method will look like (view-
only)

 The Method Name serves as a URL element in the case of REST POST and as an actual method
name for SOAP.

 When configuring a SOAP method, the Method Name needs to be a valid Java method name.

 The POST URL is only significant for REST, as SOAP methods are al l accessed using the base
endpoint URL.

3.2.6 Left-Side Menu Toolbar

The Left-Side Menu Toolbar is available once a Project has been selected in the Workspace . It
allows navigation through the sections of a Project.

27

95

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Project Takes you to the Project Information view

Sources Displays the Sources view for the selected project

Aggregates Displays the Aggregates view for the selected project

Webservices Displays the Webservices view for the selected project

3.3 Top Menu Toolbar

The Top menu toolbar is always situated in the top part of the DTS window.

Top menu toolbar

 It contains the following buttons and context menus:

 Home
Takes you back to the Workspace page

30

41

59

70

27

96

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 Documentation
Opens the Help Manual for the DTS application

 Preferences
Opens the System Preferences Menu (system-wide settings)

 User
Opens the User Menu (user settings)

 Active
Resources

Opens the Active Resources list (status of your published projects)

3.3.1 Preferences Menu

This Menu presents the DTS System Preferences.

The available actions are:

 Webservice
Deployers

Opens a separate Webservice Deployers dialog

 Connector Types
Opens a separate Connector Types dialog

 Notification Senders
Opens a separate Notification Senders dialog

96

111

40

97

104

109

97

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.3.1.1 Webservice Deployers

The Webservice Deployers dialog allows you to create a new deployment entity within DTS, which
can then be used to automatically deploy Webservices from their Details Dialog .

Add a new Webservice Deployer

To add a new Webservice Deployer, begin by clicking the Add button . This will reveal the Add
new Webservice Deployer section.

73

98

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Add new Webservice Deployer section

Select the Webservice Deployer type from the drop-down and fill in the required fields.

The dialog contains the following fields:

[Webservice Deployer]
Type*

The type of deployment that should be executed when this deployer is
used.

[Webservice Deployer]
Name*

The name given to the deployer (this is how it will be known within
DTS). The name must be unique.

Hostname* The hostname or IP address of the machine running the application
server

Port The port used to access the administrative functions of the application
server

Host Username The username used for logging onto the application server host
machine (using SSH)

Host Password The password for the Host Username

99

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Copy path The absolute path on the application server where the webservice will
be copied

Admin Username The username used for logging into the application server software as
an administrator

Admin Password The password for App Server Username

To save an entry, click the Save button.

 The save button w il l only become available when all the required fields are fi l led.

 Please note that the Webservice Deployer name must be unique.

To delete an entry, click the Delete button.

 *These parameters are always required

 The fields that are required/available depend on the Deployment Type selected in the Deployer
Type field, as does the interpretation of certain fields.

Deployer Types

SCP

SCP deployment will attempt to copy the WAR archive containing the Webservice to the application
server machine via SCP. This requires the application server to feature automatic deployment from
a watched directory.

It requires the following parameters:

Hostname The hostname or IP address of the machine running the application
server

Host Username The username used for logging onto the application server host
machine (using SSH)

Host Password The password for the Host Username

Deployment path The directory the application server watches for deployed service
changes

 If the application server is configured to only pick up changes to the watched folder on startup, a
restart w il l be required.

100

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Samba

Samba deployment will attempt to copy the WAR archive containing the Webservice to the
application server machine via Samba. This requires the application server to feature automatic
deployment from a watched directory.

It requires the following parameters:

Hostname The hostname or IP address of the machine running the application
server

Host Username The username used for logging onto the application server host
machine (Windows Login)

Host Password The password for the Host Username

Deployment path The directory the application server watches for deployed service
changes

 If the application server is configured to only pick up changes to the watched folder on startup, a
restart w il l be required.

TomcatHTTP

TomcatHTTP deployment uses a two-stage method of deployment to a Tomcat application server.
In the first stage, it will copy the WAR file to a given path on the application server machine and in
the second stage it will issue an HTTP request to Tomcat to deploy the Webservice from that local
path.

It requires the following parameters:

Hostname The hostname or IP address of the machine running the application
server

Port The port used to access Tomcat's administrative functions (by default
9990)

Host Username The username used for logging onto the application server host
machine (using SSH)

Host Password The password for the Host Username

Deployment path The absolute path on the application server where the webservice will
be copied (can be any path that both Host Username and the Tomcat
OS user can access and Host Username can write to)

App Server Username A username with enough administrative privileges on the Tomcat
system to deploy webservices

App Server Password The password for App Server Username

101

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

 This deployment method is useful when using a Tomcat server that doesn't watch a directory or
when connecting via SSH/Samba w ith a user that can write to the watched directory is not possible.

JBossCLI

JBossCLI deployment uses the remote console tool provided by JBoss/Wildfly application servers
to deploy services.

It requires the following parameters:

Hostname The hostname or IP address of the machine running the application
server

Port The port used to access the JBoss/Wildfly administrative functions (by
default 9990)

App Server Username A username with enough administrative privileges on the JBoss/Wildfly
system to deploy webservices

App Server Password The password for App Server Username

CLI Executable Path The absolute path to a locally available jboss-cli.jar

 This deployment method is useful when using a JBoss/Wildfly server that doesn't watch a
directory or when connecting via SSH/Samba w ith a user that can write to the watched directory is
not possible.

Weblogic

Weblogic deployment uses a two-stage method of deployment to an Oracle Weblogic application
server. In the first stage, it will copy the WAR file to a given path on the application server machine
and in the second stage it will use SSH to log into the same machine and use the Weblogic
administration CLI on the server to deploy the webservice from the temporary path.

Hostname The hostname or IP address of the machine running the application
server

Host Username The username used for logging onto the application server host
machine (using SSH)

Host Password The password for the Host Username

Deployment path The absolute path on the application server where the webservice will
be copied (can be any path that both Host Username and the Weblogic
OS user can access and Host Username can write to)

App Server Username A username with enough administrative privileges on the Weblogic
system to deploy webservices

102

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

App Server Password The password for App Server Username

CLI Executable Path The absolute path to a the Weblogic CLI tool on the app server
machine

 This deployment method is useful when using a Weblogic server that doesn't watch a directory or
when connecting via SSH/Samba w ith a user that can write to the watched directory is not possible.

Websphere

Websphere deployment uses a two-stage method of deployment to an IBM Websphere application
server. In the first stage, it will copy the WAR file to a given path on the application server machine
and in the second stage it will use SSH to log into the same machine and use the Websphere
administration CLI on the server to deploy the webservice from the temporary path.

Hostname The hostname or IP address of the machine running the application
server

Host Username The username used for logging onto the application server host
machine (using SSH)

Host Password The password for the Host Username

Deployment path The absolute path on the application server where the webservice will
be copied (can be any path that both Host Username and the
Websphere OS user can access and Host Username can write to)

App Server Username A username with enough administrative privileges on the Websphere
system to deploy webservices

App Server Password The password for App Server Username

CLI Executable Path The absolute path to a the Websphere CLI tool on the app server
machine

 This deployment method is useful when using a Websphere server that doesn't watch a directory
or when connecting via SSH/Samba w ith a user that can write to the watched directory is not
possible.

 Please see Webservices->Integration->Application Server for technical detai ls and
particularities regarding different Application Servers.

199

103

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Edit a Webservice Deployer

Edit Webservice Deployer

To edit an existing Webservice Deployer click on the respective row to view its details.

If a field has been modified, the corresponding label will turn green.

 Please note that the Webservice Deployer type cannot be modified.

 Please note that the Webservice Deployer name must be unique.

If some of the fields are empty or have incorrect values, their respective labels will turn red and the
save button will be disabled.

The fields that contain the initial value will have a blue label.

To save your changes, click the Save button.

 The save button w il l only become available when all the required fields are fi l led.

To delete an entry, click the Delete button.

104

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

disabled save button

3.3.1.2 Connector Types

The Connector Types Dialog lets you manage the Connector Types available in your Projects.

These connector types must be based on an existing Category (either one of the built-in
connectors , or a registered custom one).118

105

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Connector Types dialog

The existing elements in the Connector Types list are read-only - their fields cannot be modified.

The Used By section shows the list of Connectors of each specific type defined in the
environment in the form [Project Name]/[Connector Name].

The expand symbol will be present for each item on the list.

To expand this list, click on its respective row/tile. The expanded section contains buttons for
opening the Environment and Volumes editors for the selected connector type, as well as a full
expanded list of the project/connectors that are currently using it.

To delete an entry, click the Delete button.

 Please note that you can only delete connector types that are not currently in use.

106

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

connector type not in use

Add new Connector Type

To add a new Connector Type click on the Add button.

Select a Category from the drop-down , then enter a Variety. The Variety is used to differentiate
between Connector Types of the same Category. It can be anything, but must be unique for the
Category.

Add New Connector Type

Category * The base Category for the Connector Type.

Variety * The name you wish to call this particular variety of the [Category] connector type

 Connector Types defined here w il l henceforth be know throughout DTS as [Category]:[Variety]

Environment &
Volumes

These buttons are disabled when creating a new Connector Type, but become
accessible once the entry is saved.

 Connector Types w il l inherit al l the parameters from their Category as well

107

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

To save an entry, click the Save button.

 The save button w il l only become available when all the required fields are fi l led.

 * These fields are required

 Connector Types are required for creating Connectors w ithin projects. A Connector cannot directly
use a Connector Category.

Edit a Connector Type

The only editable properties for a Connector Type are its lists of Environment Variables and
Volume Mappings, which are accessible by clicking the Environment and Volumes buttons
respectively.

The Environment Variables Editor allows you the Edit, Add and Delete System
Environment Variables that will be set in all containers running this Connector Type. They present

108

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

as Key-Value Pairs where the key is the name of the variable and the value is the value assigned to
the variable.

Environment variables are generally used for setting useful file paths or parameters for the
Producer running in the container.

The Volume Mappings Editor allows you to Edit, Add and Delete Volume Mappings between
the host machine and the containers running this Connector Type. They present as Key-Value
Pairs where the key is a path on the Host Machine and the value is the mapped path inside
Producer Containers.

Volume Mappings are generally used to provide access to files on the host to the Producer running
in the container.

109

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.3.1.3 Notification Senders

The Notification Senders dialog allows you to configure email accounts within DTS, which can then
be used to send Project Notifications .

Notification Senders Dialog

Add a new Notification Sender

To add a new Notification Sender, begin by clicking the Add button . This will reveal the Add
new Notification Sender section.

Add new Notification Sender

The dialog contains the following fields:

32

110

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

[Notification Sender]
Address

The email address of the account (this will double as the identifier for
the sender within DTS).

Host The SMTP server hostname.

Port The SMTP server port.

Encryption The type of encryptions to be used (none, SSL, STARTTLS)

Username The SMTP username.

Password The SMTP password.

To save an entry, click the Save button.

 The save button w il l only become available when all the fields are fi l led.

 Only one sender can be configured for any given email address.

Edit a Notification Sender

To edit an existing Notification Sender click on the respective row to view its details.

If a field has been modified, the corresponding label will turn green.

If some of the fields are empty or have incorrect values, their respective labels will turn red and the
save button will be disabled.

The fields that contain the initial value will have a blue label.

To save your changes, click the Save button.

 The save button w il l only become available when all the required fields are fi l led.

To delete an entry, click the Delete button.

111

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

3.3.2 User Menu

This menu presents the current user and its available actions.

 Remove user
Removes a user account from the database

 Sign out
Click on this button to sign out of the DTS application and go back to the
Login page

3.4 Filters & Relationships

For DTS, Filters and Relationships are manifestations of the same underlying objects -
Predicates . However, differences in how they are used warrant treating them separately.

Filters

Filters are used to define complex query clauses on DTS resources, generally used to limit which
records from those resources DTS will provide to its consumers.

26

239

112

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Filter dialog

Operation Allows you to select a specific operation from the drop-down

Negated Allows you to set the value of the Negated attribute

Field Allows you to select a specific field from the drop-down, on which to
apply a filtering operation.

Value Allows you to specify a constant value for the selected field to be
checked against.

 The available operations are: AND, OR, EQUALS, LIKE, GREATER, LOWER, GREATER or EQUAL,
LOWER or EQUAL.

 To save your changes, cl ick on the Accept button.

Operations can be compounded using the AND and OR operators to virtually no limit of complexity.

The Negated checkbox controls whether the particular clause in the filter will be negated, for
example:

· EQUALS + Negated = NOT EQUALS

· GREATER + Negated = LOWER or EQUAL

· OR + Negated = NOR

 Please see the Predicates Technical Guide for more information regarding fi l ter composition.239

113

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Relationships

The same mechanism that is used for defining Filters is used to define Aggregate Relationships,
with a few notable differences.

Aggregate relationship

Firstly, the Relationship Editor provides a choice of Parent. This sets the Aggregate source to
target with the relationship.

Secondly, since for a relationship we need to compare two attributes from resource records, rather
than an attribute to a constant value, the Value box from Filter is replaced with a Parent Field
dropdown which presents the attributes available in the Parent resource.

Lastly, since relationships are used to simulate Foreign Keys or to feed routine inputs, the
Operation can only be EQUALS.

Operation For relationships, this can only be EQUALS

Negated Allows you to set the value of the Negated attribute (unused).

Child Field Allows you to select a specific child field from the drop-down.

Child fields are the Query Parameters of the Aggregate Source that the
relationship is defined on: fields for Collections and arguments for
Routines.

Parent Field Allows you to specify a Parent Field to be fed into the Child Field.

114

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Parent fields are Attributes of the selected Parent resource: fields for
Collections and outputs for Routines.

 Please see the Aggregation Technical Guide for more information on Relationships.

 To save your changes, cl ick on the Accept button.

3.5 Errors & Warnings

Every time an action that requires loading time is performed (such as opening a connector or

loading a collection) an Animated Loader will appear at the bottom of the selected card to
indicate the operation is still in progress. After the operation is finished, the DTS UI will display,
depending on the operation's success, a message, a warning or an error on the bottom right hand
corner of the screen.

Successful operation message example Error message example

 Info message example

 The messages w il l disappear after a few seconds. If you have multiple operations running at the
same time, the messages w il l stack.

242

115

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Message stack

In case of an error, the corresponding card that triggered the operation will be highlighted in red. The

Error Button will also appear on the card .

To view the error message again, click on the error button. The message will appear again on the
bottom right hand corner of the screen.

To view more specific details about an error , simply click on the error message on the bottom right
hand corner of the screen.

An alert message will appear at the top of the screen containing detailed information.

To close the alert, click OK.

Card with error

116

DTS Product Manual © 2023 Realworld Systems B.V.

Web UI

Error details alert

Connectors

Details about all the datasource connectors DTS provides

118

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4 Connectors

DTS connectors are software modules that implement the DTS communications API in order to
provide access to data and functionality from a particular data source.

Connectors are generally stand-alone modules designed to run inside a container (e.g. Docker),
connect to the DTS Controller and respond to requests in accordance to the DTS
communications API.

The types of requests connectors can respond to depend on the mode in which they are running.
This can be Metadata Mode for responding to requests to describe data structures and
functionality endpoints or Data Mode for responding to data streaming and remote execution
requests.

This section explores the particularities of each pre-built data source connector DTS provides.

Certain terms are used in the overview of each connector:

§ Development Platform: they fundamental runtime environment of the connector;

§ Deployment Paradigm: the way each connector is encapsulated for deployment and/or
instantiated;

§ Metadata Mode Paradigm: how each connector is instantiated for use in Metadata Mode: Local
(within the GUI Controller container) or Remote (in a separate container);

§ DTS_PRODUCER_CATEGORY: the exact name by which DTS knows the connector type
category.

Currently available pre-built connectors are:

§ MS SQL Server

§ Oracle

§ PostgreSQL

§ SAP Hana

§ MySQL

§ Smallworld

§ Web Service

4.1 Apache Kafka

The Apache Kafka Connector allows DTS and its clients to interact with Topics in Apache Kafka.

256

210

127

139

146

153

133

159

181

119

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY Kafka

§ Connection Parameters

§ Types

§ Topics

§ Limitations

4.1.1 Connection Parameters

Properties A list of properties that will be used for all Kafka Consumers and
Producers on this connector. Properties need to be in the standard
form:

<property.name>=<property.value>

e.g.:

bootstrap.servers=172.16.10.225

 bootstrap.servers is the only mandatory property since it defines
where to find the Kafka instance

 Any properties defined here w il l be inherited by al l Topics in the
connector and all Subscriptions to those Topics. A property w ith the
same name set on a Topic or on Subscribe w il l override the properties
set here.

4.1.2 Types

Kafka type mappings are not fully automatic, as the system does not provide the necessary
metadata.

Instead, the user needs to decide how the keys and message bodies of Kafka records will be (de)
serialized by DTS. This will also reflect in the data types provided to the consumers.

119

119

120

120

120

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

At this time, DTS support two types of (de)serialization for Kafka objects.

Kafka Deserializer DTS Type

org.apache.kafka.common.serialization.StringDeserializer STRING

org.apache.kafka.common.serialization.ByteArrayDeserializ
er

BYTE VECTOR

4.1.3 Topics

The DTS Kafka Connector supports operations on all Topics accessible with the given connection
parameters.

DTS Naming

DTS Name <topic_name>

DTS Key <topic_name>

Keys and Messages

DTS can serialize and deserialize any keys and messages from any topic with the as outlined in
Types .

Metadata

The connector is also capable of extracting metadata regarding available Topics:

§ Partition IDs

4.1.4 Limitations

§ Avro or any other kind of custom structured (de)serialization is not yet supported.

§ Static filters on keys and messages are not yet available.

119

121

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.2 MariaDB

The MariaDB Connector allows DTS and its clients to access data and functionality in MariaDB
databases.

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY MariaDB

§ Connection Parameters

§ Types

§ Geometry

§ Tables and Views

§ Routine Calls

§ Limitations

4.2.1 Connection Parameters

Connection String The connection string JDBC will use to connect to the DB, of the
following form:

jdbc:mariadb://<hostname>:<port>/<db>

e.g.:

jdbc:mariadb://172.16.10.231:3307/test

Username Username for the user through which DTS will connect to the DB.

Password Password for the user.

Schemas The names of the schemas/databases DTS should access,
separated by commas.

 Schemas are optional
If the Schemas field is left empty, DTS will access all the databases in the instance that the specified user can.

121

122

123

125

125

126

122

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.2.2 Types

MariaDB Type DTS Type

bigint INT64

int8 INT64

int INT32

integer INT32

mediumint INT32

int4 INT32

int3 INT32

smallint INT16

int2 INT16

tinyint UNSIGNED_INT8

int1 UNSIGNED_INT8

numeric DECIMAL

decimal DECIMAL

dec x DECIMAL

fixed DECIMAL

bit BOOLEAN

boolean BOOLEAN

float FLOAT

real FLOAT

double DOUBLE

double precision DOUBLE

date DATE

year DATE

datetime DATE_TIME

timestamp DATE_TIME

time TIME

char STRING

varchar STRING

enum STRING

set STRING

uuid STRING

inet4 STRING

inet6 STRING

123

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

binary BINARY

varbinary BINARY

char byte BINARY

geometry DTS_GEOMETRY

point DTS_POINT_GEOMETRY

linestring DTS_LINE_GEOMETRY

polygon DTS_AREA_GEOMETRY

multipoint DTS_MULTIPOINT_GEOMETRY

multilinestring DTS_MULTILINE_GEOMETRY

multipolygon DTS_MULTIAREA_GEOMETRY

geometrycollection DTS_GEOMETRY

 Currently Unsupported Native Types:
tinyblob, blob, mediumblob, longblob, tinytext, text, mediumtext, longtext, json, long, long varchar

 See also
DTS Types

4.2.3 Geometry

MariaDB uses the ST Geometry format with following distinct types:

· geometry

· point

· linestring

· polygon

· multipoint

· multilinestring

· multipolygon

· geometrycollection

All types are functionally equivalent, the only distinction is what ST subtype each allows. While
geometry allows any ST subtype to be stored, the others only allow the homonym subtype (i.e. only
LINESTRING geometries are allowed in a linestring column or variable).

Geometry Types

Here is how MariaDB (ST) geometry subtypes map to GeoJson geometry types.

218

124

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

ST Subtype / MariaDB
Type

Interpretation GeoJson Geometry Type

POINT / point or
geometry

Single point Point

MULTIPOINT / multipoint
or geometry

Multiple points MultiPoint

LINESTRING / linestring
or geometry

Sequence of straight lines without gaps LineString

CIRCULARSTRING /
geometry

Sequence of circle arcs without gaps LineString + DTS
corrections

MULTILINESTRING /
multilinestring or
geometry

Multiple LINESTRINGs (not necessarily
connected)

MultiLineString

COMPOUNDCURVE /
geometry

Sequence of connected LINESTRINGs and
CIRCULARLINESTRINGs

MultiLineString + DTS
corrections

POLYGON / polygon or
geometry

Polygon (with or without holes) Polygon

CURVEPOLYGON /
geometry

Polygon whose boundaries can contain
circle arcs

Polygon + DTS corrections

MULTIPOLYGON /
mulipolygon or geometry

Multiple POLYGONs MultiPolygon (+ DTS
corrections)

GEOMETRYCOLLECTI
ON / geometrycollection
or geometry

Collection of any of the above GeometryCollection (+ DTS
corrections)

Z and M modifiers (e.g. POINT Z) are supported for all geometry types (except
GEOMETRYCOLLECTION where they are not applicable), but the M values are always ignored and
processing geometries with Z values has certain limitations .

 Further reading:
§ MariaDB Geographic and Geometric Features
§ DTS Geometry Overview

126

222

https://mariadb.com/kb/en/geographic-geometric-features/

125

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.2.4 Tables and Views

The DTS MariaDB Connector fully supports all tables and views in MariaDB and does not
differentiate between the two.

DTS Naming

DTS Name <table_or_view_name>

DTS Key <schema_name>.<table_or_view_name>

Metadata

The connector is also capable of extracting metadata regarding the table/view columns:

§ DATA_TYPE

§ CHARACTER_MAXIMUM_LENGTH

§ NUMERIC_PRECISION

§ DATETIME_PRECISION

§ NUMERIC_SCALE

§ IS_NULLABLE

§ ORDINAL_POSITION

§ CONSTRAINT -> PRIMARY_KEY

Standard functionality only makes use of DATA_TYPE, ORDINAL_POSITION and PRIMARY_KEY,
but the other items are available for extension in DTS descriptor objects.

4.2.5 Routine Calls

The DTS MariaDB Connector supports remote calls for any MariaDB stored procedures and
functions.

DTS Naming

126

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

DTS Name <proc_or_func_name>

DTS Key <schema_name>.<proc_or_func_name>

Arguments and Results

Functions and procedures with any type of arguments and results are supported, as long as the
types themselves are supported. Please see the list of supported types for more information.

Metadata

The connector is also capable of extracting metadata regarding the arguments and results of a
procedure or function:

§ DATA_TYPE

§ CHARACTER_MAXIMUM_LENGTH

§ NUMERIC_PRECISION

§ DATETIME_PRECISION

§ NUMERIC_SCALE

§ ORDINAL_POSITION

§ PARAMETER_MODE

Standard functionality only makes use of DATA_TYPE, ORDINAL_POSITION and
PARAMETER_MODE, but the other items are available for extension in DTS descriptor objects.

4.2.6 Limitations

§ DB Synonyms are not currently supported.

§ The following native data types are not currently supported:

o blob, tinyblob, mediumblob, longblob

o text, tinytext, mediumtext, longtext

o long, long varchar

o json

§ M (measure) values on "POINT M" or "POINT ZM" geometries are ignored by the connector and
are not passed through.

122

127

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

§ General DTS limitations regarding Z-valued geometries apply. Please see Known Limitations
for more details.

4.3 MS SQL Server

The MS SQL Server Connector allows DTS and its clients to access data and functionality in
Microsoft SQL Server databases.

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY MSSQL

§ Connection Parameters

§ Types

§ Geometry

§ Tables and Views

§ Function/Procedure Calls

§ Limitations

4.3.1 Connection Parameters

Connection String The connection string JDBC will use to connect to the DB, of the
following form:

jdbc:sqlserver://<hostname>:<port>;databaseName=<d
b_name>

e.g.:

jdbc:sqlserver://172.16.10.231:1433;databaseName=dts_test_db

Username Username for the user through which DTS will connect to the DB.

322

127

128

129

131

131

133

128

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Password Password for the user.

Schemas The names of the schemas DTS should access, separated by
commas.

 Schemas are optional
If the Schemas field is left empty, DTS will access all the schemas in the database that the specified user can.

4.3.2 Types

MSSQL Type DTS Type

bigint INT64

int INT32

smallint INT16

tinyint UNSIGNED_INT8

numeric DECIMAL

decimal DECIMAL

money DECIMAL

smallmoney DECIMAL

bit BOOLEAN

float DOUBLE

real DOUBLE

date DATE

datetime DATE_TIME

datetime2 DATE_TIME

smalldatetime DATE_TIME

datetimeoffset DATE_TIME

time TIME

char STRING

nchar STRING

varchar STRING

nvarchar STRING

text STRING

ntext STRING

binary BINARY

varbinary BINARY

image BINARY

129

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

uniqueidentifier STRING

xml STRING

geometry DTS_GEOMETRY

geography DTS_GEOGRAPHY

User Types are fully supported and mapped as their underlying native type.

Table Types are also fully supported and mapped as DTS objects which reflect the table type's
column structure. When they are used as arguments, they take the form of arrays with the
respective row element type.

 Currently Unsupported Native Types:
cursor, rowversion, hierarchyid, sqlvariant

 See also
DTS Types

4.3.3 Geometry

There are two categories of objects that are interpreted as geometries in MS SQL Server:

Geometry Geography

Compliant with the ST_GEOMETRY standard Compliant with the ST_GEOMETRY standard

Accessible as WKT Accessible as WKT

Strictly euclidean Strictly geodetic

Coordinates represent (x, y) or (x, y, z) Coordinates represent (lon, lat) or (lon, lat, elv)

If specified, coordinate system must be in length
units

If specified, coordinate system must be in
degrees

The DTS MS SQL Connector transforms both categories to DTSGeoJson for transfer, but
keeps track of the them as different internal types (DTS_GEOMETRY, DTS_GEOGRAPHY) in
order to correctly interact with MS SQL Server and other data sources which similarly differentiate
spatial data.

218

222

218

130

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Geometry Types

Here is how MS SQL geometry and geography subtypes map to GeoJson geometry types.

ST Subtype Interpretation GeoJson Geometry Type

POINT Single point Point

MULTIPOINT Multiple points MultiPoint

LINESTRING Sequence of straight lines without gaps LineString

CIRCULARSTRING Sequence of circle arcs without gaps LineString + DTS
corrections

MULTILINESTRING Multiple LINESTRINGs (not necessarily
connected)

MultiLineString

COMPOUNDCURVE Sequence of connected LINESTRINGs and
CIRCULARLINESTRINGs

MultiLineString + DTS
corrections

POLYGON Polygon (with or without holes) Polygon

CURVEPOLYGON Polygon whose boundaries can contain circle
arcs

Polygon + DTS corrections

MULTIPOLYGON Multiple POLYGONs MultiPolygon (+ DTS
corrections)

GEOMETRYCOLLECT
ION

Collection of any of the above GeometryCollection (+
DTS corrections)

Z and M modifiers (e.g. POINT Z) are supported for all geometry types (except
GEOMETRYCOLLECTION where they are not applicable), but the M values are always ignored and
processing geometries with Z values has certain limitations .

 Further reading:
§ MSSQL Spatial Data Types Overview
§ DTS Geometry Overview

133

222

https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-types-overview?view=sql-server-ver15

131

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.3.4 Tables and Views

The DTS MS SQL Server Connector fully supports all tables and views in MS SQL Server and does
not differentiate between the two.

DTS Naming

DTS Name <table_or_view_name>

DTS Key <schema_name>.<table_or_view_name>

Metadata

The connector is also capable of extracting metadata regarding the table/view columns:

§ DATA_TYPE

§ CHARACTER_OCTET_LENGTH

§ CHARACTER_MAXIMUM_LENGTH

§ NUMERIC_PRECISION

§ DATETIME_PRECISION

§ NUMERIC_SCALE

§ IS_NULLABLE

§ ORDINAL_POSITION

§ CONSTRAINT -> PRIMARY_KEY

Standard functionality only makes use of DATA_TYPE, ORDINAL_POSITION and PRIMARY_KEY,
but the other items are available for extension in DTS descriptor objects.

 Structured types (table types) are not supported as column data types by MS SQL Server, only native and user
types are. Please see Types for information of how the connector handles these.

4.3.5 Routine Calls

The DTS MS SQL Connector supports remote calls for any MS SQL Server stored procedures and
functions, scalar-valued as well as table-valued.

128

132

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

DTS Naming

DTS Name <proc_or_func_name>

DTS Key <schema_name>.<proc_or_func_name>

Arguments and Results

§ Table type arguments to functions and procedures, as well as results of table-valued functions
are fully supported for remote calling

o The table arguments are always passed through DTS as arrays of custom objects, each
object representing a row in the input table

o The result of a table-valued function is always a DTS stream

 See Streams

§ MS SQL does not have a way of representing a single custom object, other than a table with a
single row, so that extends to DTS, where they will become arrays with a single element.

§ In MS SQL Server, procedure output arguments always serve as inputs as well. As such, they
will appear both in the list of arguments and the list of results for a given remote call and be
treated as two distinct items, one going in, one coming out.

For argument and result native and user type mappings, please see Types .

Metadata

The connector is also capable of extracting metadata regarding the arguments and results of a
procedure or function:

§ DATA_TYPE

§ CHARACTER_OCTET_LENGTH

§ CHARACTER_MAXIMUM_LENGTH

§ NUMERIC_PRECISION

§ DATETIME_PRECISION

§ NUMERIC_SCALE

§ ORDINAL_POSITION

§ PARAMETER_MODE

220

128

133

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

§ USER_DEFINED_TYPE

Standard functionality only makes use of DATA_TYPE, ORDINAL_POSITION,
PARAMETER_MODE and USER_DEFINED_TYPE, but the other items are available for extension
in DTS descriptor objects.

4.3.6 Limitations

§ DB Synonyms are not currently supported.

§ The following native data types are not currently supported:

o cursor

o rowversion

o hierarchyid

o sqlvariant

§ Any user types that extend these native types are also not supported.

§ Any table types that contain columns which use these native types are not supported.

§ M (measure) values on "POINT M" or "POINT ZM" geometries are ignored by the connector and
are not passed through.

§ General DTS limitations regarding Z-valued geometries apply. Please see Known Limitations
for more details.

4.4 MySQL

The MySQL Connector allows DTS and its clients to access data and functionality in MySQL
databases.

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY MySQL

§ Connection Parameters

322

134

134

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

§ Types

§ Geometry

§ Tables and Views

§ Routine Calls

§ Limitations

4.4.1 Connection Parameters

Connection String The connection string JDBC will use to connect to the DB, of the
following form:

jdbc:mysql://<hostname>:<port>

e.g.:

jdbc:mysql://172.16.10.231:3306

Username Username for the user through which DTS will connect to the DB.

Password Password for the user.

Schemas The names of the schemas/databases DTS should access,
separated by commas.

 Schemas are optional
If the Schemas field is left empty, DTS will access all the databases in the instance that the specified user can.

4.4.2 Types

MySQL Type DTS Type

bigint INT64

int INT32

integer INT32

mediumint INT32

smallint INT16

tinyint UNSIGNED_INT8

numeric DECIMAL

decimal DECIMAL

dec DECIMAL

134

135

137

138

139

135

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

fixed DECIMAL

bit BOOLEAN

float FLOAT

real FLOAT

double DOUBLE

double precision DOUBLE

date DATE

year DATE

datetime DATE_TIME

timestamp DATE_TIME

time TIME

char STRING

varchar STRING

enum STRING

set STRING

binary BINARY

varbinary BINARY

geometry DTS_GEOMETRY

point DTS_POINT_GEOMETRY

linestring DTS_LINE_GEOMETRY

polygon DTS_AREA_GEOMETRY

multipoint DTS_MULTIPOINT_GEOMETRY

multilinestring DTS_MULTILINE_GEOMETRY

multipolygon DTS_MULTIAREA_GEOMETRY

geometrycollection DTS_GEOMETRY

 Currently Unsupported Native Types:
tinyblob, blob, mediumblob, longblob, tinytext, text, mediumtext, longtext, json

 See also
DTS Types

4.4.3 Geometry

MySQL uses the ST Geometry format with following distinct types:

· geometry

· point

218

136

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

· linestring

· polygon

· multipoint

· multilinestring

· multipolygon

· geometrycollection

All types are functionally equivalent, the only distinction is what ST subtype each allows. While
geometry allows any ST subtype to be stored, the others only allow the homonym subtype (i.e. only
LINESTRING geometries are allowed in a linestring column or variable).

Geometry Types

Here is how MySQL (ST) geometry subtypes map to GeoJson geometry types.

ST Subtype / MySQL
Type

Interpretation GeoJson Geometry Type

POINT / point or
geometry

Single point Point

MULTIPOINT / multipoint
or geometry

Multiple points MultiPoint

LINESTRING / linestring
or geometry

Sequence of straight lines without gaps LineString

CIRCULARSTRING /
geometry

Sequence of circle arcs without gaps LineString + DTS
corrections

MULTILINESTRING /
multilinestring or
geometry

Multiple LINESTRINGs (not necessarily
connected)

MultiLineString

COMPOUNDCURVE /
geometry

Sequence of connected LINESTRINGs and
CIRCULARLINESTRINGs

MultiLineString + DTS
corrections

POLYGON / polygon or
geometry

Polygon (with or without holes) Polygon

CURVEPOLYGON /
geometry

Polygon whose boundaries can contain
circle arcs

Polygon + DTS corrections

MULTIPOLYGON /
mulipolygon or geometry

Multiple POLYGONs MultiPolygon (+ DTS
corrections)

137

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

GEOMETRYCOLLECTI
ON / geometrycollection
or geometry

Collection of any of the above GeometryCollection (+ DTS
corrections)

Z and M modifiers (e.g. POINT Z) are supported for all geometry types (except
GEOMETRYCOLLECTION where they are not applicable), but the M values are always ignored and
processing geometries with Z values has certain limitations .

 Further reading:
§ MySQL Spatial Reference
§ DTS Geometry Overview

4.4.4 Tables and Views

The DTS MySQL Connector fully supports all tables and views in MySQL and does not differentiate
between the two.

DTS Naming

DTS Name <table_or_view_name>

DTS Key <schema_name>.<table_or_view_name>

Metadata

The connector is also capable of extracting metadata regarding the table/view columns:

§ DATA_TYPE

§ CHARACTER_MAXIMUM_LENGTH

§ NUMERIC_PRECISION

§ DATETIME_PRECISION

§ NUMERIC_SCALE

§ IS_NULLABLE

§ ORDINAL_POSITION

§ CONSTRAINT -> PRIMARY_KEY

139

222

https://dev.mysql.com/doc/refman/8.0/en/spatial-type-overview.html

138

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Standard functionality only makes use of DATA_TYPE, ORDINAL_POSITION and PRIMARY_KEY,
but the other items are available for extension in DTS descriptor objects.

4.4.5 Routine Calls

The DTS MySQL Connector supports remote calls for any MySQL stored procedures and
functions.

DTS Naming

DTS Name <proc_or_func_name>

DTS Key <schema_name>.<proc_or_func_name>

Arguments and Results

Functions and procedures with any type of arguments and results are supported, as long as the
types themselves are supported. Please see the list of supported types for more information.

Metadata

The connector is also capable of extracting metadata regarding the arguments and results of a
procedure or function:

§ DATA_TYPE

§ CHARACTER_MAXIMUM_LENGTH

§ NUMERIC_PRECISION

§ DATETIME_PRECISION

§ NUMERIC_SCALE

§ ORDINAL_POSITION

§ PARAMETER_MODE

Standard functionality only makes use of DATA_TYPE, ORDINAL_POSITION and
PARAMETER_MODE, but the other items are available for extension in DTS descriptor objects.

134

139

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.4.6 Limitations

§ DB Synonyms are not currently supported.

§ The following native data types are not currently supported:

o blob, tinyblob, mediumblob, longblob

o text, tinytext, mediumtext, longtext

o json

§ M (measure) values on "POINT M" or "POINT ZM" geometries are ignored by the connector and
are not passed through.

§ General DTS limitations regarding Z-valued geometries apply. Please see Known Limitations
for more details.

4.5 Oracle

The Oracle Connector allows DTS and its clients to access data and functionality in Oracle
Databases.

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY Oracle

§ Connection Parameters

§ Types

§ Geometry

§ Tables and Views

§ Function/Procedure Calls

§ Limitations

322

140

140

141

143

144

145

140

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.5.1 Connection Parameters

Connection String The connection string JDBC will use to connect to the DB, of the
following form:

jdbc:oracle:thin:@<hostname>:<port>:<sid>

e.g.:

jdbc:oracle:thin:@172.16.10.212:1521:orcl

Username Username for the user through which DTS will connect to the DB.

Password Password for the user.

Schemas The names of the schemas DTS should access, separated by
commas.

 Schemas are optional
If the Schemas field is left empty, DTS will only access the given user's own schema.

4.5.2 Types

Oracle Type DTS Type

BOOLEAN BOOLEAN

CHAR STRING

NCHAR STRING

VARCHAR STRING

VARCHAR2 STRING

NVARCHAR2 STRING

ROWID STRING

UROWID STRING

MLSLABEL STRING

RAW BINARY

INTEGER INT32

INT INT32

SMALLINT INT32

NUMBER DECIMAL

NUMERIC DECIMAL

DECIMAL DECIMAL

141

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

FLOAT DOUBLE

REAL FLOAT

DOUBLE PRECISION DOUBLE

DATE DATE

TIMESTAMP DATE_TIME

TIMESTAMP WITH TIMEZONE DATE_TIME

TIMESTAMP WITH LOCAL TIMEZONE DATE_TIME

INTERVAL YEAR TO MONTH STRING

INTERVAL DAY TO SECOND STRING

TIME TIME

MDSYS.SDO_GEOMETRY DTS_GEOMETRY

The DTS Oracle Connector also supports the following categories of User-Defined Types:

· Object Types: any Oracle object type is supported as long as its individual field types are also
supported;

· Collection Types: VARRAYs of native and Object Types are fully supported.

· Type Inheritance is fully supported;

· Aliases are fully supported for type naming;

 Currently Unsupported Native Types:
BLOB, CLOB, NCLOB, LONG RAW, BFILE, CFILE, XMLTYPE

 See also
DTS Types

4.5.3 Geometry

The DTS Oracle Connector can exchange geometry data with an Oracle Database in the standard
Oracle Spatial MDSYS.SDO_GEOMETRY format.

The connector transforms SDO_GEOMETRY objects to and from DTSGeoJson for propagation
through DTS and maps such columns, fields and arguments with the internal type of
DTS_GEOMETRY.

Geometry Types

SDO_GEOMETRY objects come in a few different types, codified by the GTYPE field. Here is how
they are mapped by the connector:

218

222

218

142

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

SDO GTYPE Interpretation GeoJson Geometry Type

DL01 Single point Point

DL02 Sequence of lines (straight or curved) without
gaps

LineString (+ DTS
corrections)

DL03 Polygon (with or without holes) (can have
curved edges)

Polygon (+ DTS
corrections)

DL04 Collection of various geometries GeometryCollection (+
DTS corrections)

DL05 Multiple points MultiPoint

DL06 Multiple lines, not necessarily connected MultiLineString (+ DTS
corrections)

DL07 Multiple polygons MultiPolygon (+ DTS
corrections)

 Solid (DL08) and multisol id (DL09) geometries are not supported at this time

 The D and L values in the GTYPE represent the Dimensionality and the Linear referencing
measure respectively.
The connector accepts D values of 2 and 3 (with certain limitations) and ignores the L values.

Sector Types

Corrections will be added to geometries which need to be approximated for standard GeoJson
representation. These are the geometries which contain sectors that are not sequences of straight
lines.

The SDO_GEOMETRY format encodes the various sectors that form a geometry in the
SDO_ELEM_INFO field as triplets of the form [startIndex, elementType, interpretation]. Here is
how these translate to DTS correction line types:

SDO ELEM_INFO Interpretation Correction Line Type

i, 1, 1 Point coordinate none

i, 1, 0 Point orientation none*

i, 1, n>1 Point cluster with n points none

i, 2, 1 Straight line string none (LINE_STRING**)

145

143

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

i, 2, 2 Circular arc string CP_ARCS

i, 2, 3 NURBS NURBS

i, 1003/2003, 1 Polygon outer/inner boundary made of
straight lines

none (LINE_STRING**)

i, 1003/2003, 2 Polygon outer/inner boundary made of
circular arcs

CP_ARCS

i, 1003/2003, 3 Polygon outer/inner boundary which is a
perfect rectangle

RECTANGLE

i, 1003/2003, 4 Polygon outer/inner boundary which is a
perfect circle

CIRCLE

i, 4, n>1 Compound line string made of n sectors (can
contain straight lines, arcs and NURBS)

combination of CP_ARCS,
NURBS (and
LINE_STRING**)

i, 1005/2005, n>1 Compound polygon made of n sectors (can
contain straight lines, arcs and NURBS)

combination of CP_ARCS,
NURBS (and
LINE_STRING**)

 Surface and Solid elements (ETYPE=1006/2006, 1007) are not supported at this time

 * Point orientation has its own field in DTSGeoJson and does not need a correction to be stored

 ** LINE_STRING corrections are not produced by this connector or any of the other standard
connectors. It ex ists for ex tensions and optimization

 Besides the i, 1, 1 + ordinates representation, SDO_GEOMETRY can also store a single point in the
bespoke field SDO_POINT. This form is also supported by the connector.

 Further reading:
§ Oracle Spatial Data Types Overview
§ DTS Geometry Overview

.

4.5.4 Tables and Views

The DTS Oracle Connector fully supports all tables and views in the Oracle database and does not
differentiate between the two.

222

https://docs.oracle.com/database/121/SPATL/spatial-data-types-and-metadata.htm#SPATL020

144

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

DTS Naming

DTS Name <table_or_view_name>

DTS Key <schema_name>.<table_or_view_name>

 DB Synonyms are ful ly supported

Metadata

The connector is also capable of extracting metadata regarding the table/view columns:

§ DATA_TYPE

§ DATA_TYPE_OWNER

§ DATA_LENGTH

§ DATA_PRECISION

§ DATA_SCALE

§ NULLABLE

§ CHAR_LENGTH

§ CONSTRAINT -> PRIMARY_KEY

§ CONSTRAINT -> FOREIGN_KEY

Standard functionality only makes use of DATA_TYPE, DATA_TYPE_OWNER and
PRIMARY_KEY, but the other items are available for extension in DTS descriptor objects.

4.5.5 Routine Calls

The DTS Oracle Connector supports remote calls for any Oracle stored procedures and functions.

DTS Naming

DTS Name <proc_or_func_name>

DTS Key <schema_name>.<proc_or_func_name>

145

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Arguments and Results

§ Any of the supported data types are also supported as procedure/function argument and result
types, including the user-defined types.

§ IN OUT parameters will appear in both the arguments and the results list for a given remote call
and will be treated by the connector as two distinct items, one going in, one coming out.

§ Functions returning tables will be have their results wrapped and operated as DTS streams.
The same is true for procedures with a single OUT argument which is a table.

Metadata

The connector is also capable of extracting metadata regarding the arguments and results of a
procedure or function:

§ TYPE_NAME

§ TYPE_OWNER

§ DATA_TYPE

§ DATA_PRECISION

§ DATA_SCALE

§ DATA_LENGTH

§ DATA_LEVEL

§ POSITION

§ DEFAULT_VALUE

§ SEQUENCE

§ IN_OUT

Standard functionality only makes use of DATA_TYPE, TYPE_NAME, TYPE_OWNER, POSITION
and IN_OUT, but the other items are available for extension in DTS descriptor objects.

4.5.6 Limitations

§ The following native data types are not currently supported:

140

146

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

o BLOB

o CLOB

o NCLOB

o LONG RAW

o BFILE

o CFILE

o XMLTYPE

§ Any user types that extend or are composed of these native types are also not supported.

§ Solid and multi solid geometries, as well as any surface and solid elements in other types of
geometries are not currently supported.

§ Linear Referencing Measure values in geometry GTYPEs are ignored and not passed through the
connector.

§ General DTS limitations regarding Z-valued geometries apply. Please see Known Limitations
for more details.

4.6 PostgreSQL

The PostgreSQL Connector allows DTS and its clients to access data and functionality in
PostgreSQL databases.

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY PostgreSQL

§ Connection Parameters

§ Types

§ Geometry

§ Tables and Views

§ Function/Procedure Calls

§ Limitations

322

147

147

149

151

152

153

147

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.6.1 Connection Parameters

Connection String The connection string JDBC will use to connect to the DB, of the
following form:

jdbc:postgresql://<hostname>:<port>/<db_name>

e.g.:

jdbc:postgresql://172.16.10.242:5432/test_db

Username Username for the user through which DTS will connect to the DB.

Password Password for the user.

Schemas The names of the schemas DTS should access, separated by
commas.

 Port is optional
The <port> can be skipped in the connection string if using the default port (5432).

 Schemas are optional
If the Schemas field is left empty, DTS will access all the schemas in the database that the specified user can.

4.6.2 Types

PostgreSQL Type DTS Type

boolean BOOLEAN

character STRING

char STRING

varchar STRING

character varying STRING

text STRING

smallint INT16

smallserial INT16

int INT32

serial INT32

bigint INT64

bigserial INT64

bytea BYTE_VECTOR

148

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

real FLOAT

double precision DOUBLE

numeric DECIMAL

decimal DECIMAL

date DATE

time TIME

time with timezone TIME

time without timezone TIME

timestamp DATE_TIME

timestamp with timezone DATE_TIME

timestamp without timezone DATE_TIME

interval STRING

uuid STRING

cidr STRING

inet STRING

macaddr STRING

macaddr8 STRING

bit STRING

bit varying STRING

tsvector STRING

tsquery STRING

xml STRING

json STRING

jsonb STRING

money STRING

geometry DTS_GEOMETRY

box DTS_GEOMETRY

box2d DTS_GEOMETRY

box2df DTS_GEOMETRY

box3d DTS_GEOMETRY

circle DTS_GEOMETRY

line DTS_GEOMETRY

lseg DTS_GEOMETRY

path DTS_GEOMETRY

point DTS_GEOMETRY

polygon DTS_GEOMETRY

149

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

The DTS PostgreSQL Connector also supports all Composite (User-Defined) Types that contain
fields of supported types as well as all array [] types.

 Enumeration, External, Range and Shell types are not currently supported

4.6.3 Geometry

PostgreSQL can include two separate geometry sets: native (simple) geometries and PostGIS (ST)
geometries.

DTS maps both sets to DTSGeoJson .

Native Geometry Types

PostgreSQL Geometry
Type

Interpretation GeoJson Geometry Type

point Single point Point

lseg Line segment LineString

path Sequence of connected line segments -
can be open [] or closed ()

LineString or Polygon

box Rectangle Polygon + DTS Correction

box2d Rectangle Polygon + DTS Correction

polygon Polygon Polygon

circle Circle Polygon + DTS Correction

 The infinite " l ine" type is not supported

 The 3-dimensional "box3d" type is not supported

 Native geometry types can only be used as function inputs when they are direct arguments.
Please see Limitations for detai ls.

PostGIS Geometry Types

222

153

150

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

There are two categories of objects that are interpreted as geometries in PostgreSQL:

Geometry Geography

Compliant with the ST_GEOMETRY standard Compliant with the ST_GEOMETRY standard

Accessible as WKB Accessible as WKB

Strictly euclidean Strictly geodetic

Coordinates represent (x, y) or (x, y, z) Coordinates represent (lon, lat) or (lon, lat, elv)

If specified, coordinate system must be in length
units

If specified, coordinate system must be in
degrees

The DTS PostgreSQL Connector transforms both categories to DTSGeoJson for transfer, but
keeps track of the them as different internal types (DTS_GEOMETRY, DTS_GEOGRAPHY) in
order to correctly interact with PostgreSQL and other data sources which similarly differentiate
spatial data.

Here is how PostGIS geometry and geography types map to GeoJson geometry types.

ST Subtype Interpretation GeoJson Geometry Type

POINT Single point Point

MULTIPOINT Multiple points MultiPoint

LINESTRING Sequence of straight lines without gaps LineString

CIRCULARSTRING Sequence of circle arcs without gaps LineString + DTS
corrections

MULTILINESTRING Multiple LINESTRINGs (not necessarily
connected)

MultiLineString

COMPOUNDCURVE Sequence of connected LINESTRINGs and
CIRCULARLINESTRINGs

MultiLineString + DTS
corrections

POLYGON Polygon (with or without holes) Polygon

CURVEPOLYGON Polygon whose boundaries can contain circle
arcs

Polygon + DTS corrections

MULTIPOLYGON Multiple POLYGONs MultiPolygon (+ DTS
corrections)

222

218

151

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

 Only the 2-dimensional variants of these geometries are supported at present.

 GEOMETRYCOLLECTIONs are not currently supported.

 Further reading:
§ PostGIS Spatial Data Types Overview
§ DTS Geometry Overview

4.6.4 Tables and Views

The DTS PostgreSQL Connector fully supports all tables and views in the PostgreSQL database
and does not differentiate between the two.

DTS Naming

DTS Name <table_or_view_name>

DTS Key <schema_name>.<table_or_view_name>

Metadata

The connector is also capable of extracting metadata regarding the table/view columns:

§ DATA_TYPE

§ UDT_NAME

§ NUMERIC_PRECISION

§ NUMERIC_SCALE

§ IS_NULLABLE

§ COLUMN_DEFAULT

§ CHAR_LENGTH

§ CHARACTER_OCTET_LENGTH

§ CONSTRAINT -> PRIMARY KEY

§ CONSTRAINT -> FOREIGN_KEY

222

http://postgis.net/workshops/postgis-intro/geometries.html

152

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Standard functionality only makes use of DATA_TYPE, UDT_NAME and PRIMARY_KEY, but the
other items are available for extension in DTS descriptor objects.

4.6.5 Routine Calls

The DTS PostgreSQL Connector supports remote calls for any PostgreSQL stored functions.

 Stored Procedures are not currently supported. Please see Limitations for detai ls and
workarounds.

DTS Naming

DTS Name <func_name>

DTS Key <schema_name>.<func_name>

Arguments and Results

§ Any of the supported data types are also supported as procedure/function argument and result
types, including the user-defined types.

§ Functions returning tables will be have their results wrapped and operated as DTS streams.

 Native geometry types can only be used as function inputs when they are direct arguments.
Please see Limitations for detai ls.

Metadata

The connector is also capable of extracting metadata regarding the arguments and results of a
function:

§ DATA_TYPE

§ UDT_NAME

§ DATA_PRECISION

§ DATA_SCALE

§ DATA_LENGTH

§ POSITION

§ DEFAULT_VALUE

153

147

153

153

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

§ SEQUENCE

§ IN_OUT

Standard functionality only makes use of DATA_TYPE, UDT_NAME and POSITION, but the other
items are available for extension in DTS descriptor objects.

4.6.6 Limitations

§ Direct procedure calls are not currently supported because of limitations in the Postgres JDBC
Driver. To invoke Postgres stored procedures via DTS, please wrap them as stored functions.

§ Function overloading is not supported - a single version of a function will be available in DTS and
it cannot be controlled which.

§ Enumeration, External, Range and Shell user-defined types are not currently supported.

§ The "line" native geometry type (representing an infinite straight line) is not currently supported.

§ The "box3d" native geometry type is not currently supported.

§ User-defined types containing Postgres native (non-PostGIS) geometries ("box", "box2d",
"box2df", "circle", "lseg", "path", "point", "polygon") within their structure are not supported as
function arguments. These types of geometry can be passed to functions as direct arguments, or
PostGIS geometries (geometry, geography) can be used instead, as these are supported in any
structure. This limitation does not apply to output data (table columns, function outputs).

§ Only 2D PostGIS geometries are currently supported.

§ The GEOMETRYCOLLECTION PostGIS (ST) geometry type is not currently supported.

§ Functions returning cursors are not supported.

4.7 SAP Hana

The SAP Hana Connector allows DTS and its clients to access data and functionality in SAP Hana
databases.

Development Platform Java 8

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

154

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

DTS_PRODUCER_CATEGORY SAPHana

§ Connection Parameters

§ Types

§ Geometry

§ Tables and Views

§ Function/Procedure Calls

§ Limitations

4.7.1 Connection Parameters

Connection String The connection string JDBC will use to connect to the DB, of the
following form:

jdbc:sap://<hostname>:<port>/?autocommit=false

e.g.:

jdbc:sap://172.16.10.185:39015/?autocommit=false

Username Username for the user through which DTS will connect to the DB.

Password Password for the user.

Schemas The names of the schemas DTS should access, separated by
commas.

 Schemas are optional
If the Schemas field is left empty, DTS will access all the schemas in the database that the specified user can.

4.7.2 Types

SAP Hana Type DTS Type

bigint INT64

integer INT32

smallint INT16

tinyint INT16

decimal DECIMAL

154

154

155

156

157

158

155

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

dec DECIMAL

smalldecimal DECIMAL

float FLOAT

real FLOAT

double DOUBLE

date DATE

timestamp DATE_TIME

seconddate DATE_TIME

time TIME

char STRING

nchar STRING

varchar STRING

nvarchar STRING

shorttext STRING

alphanum STRING

string STRING

binary BINARY

varbinary BINARY

st_geometry DTS_GEOMETRY

st_point DTS_GEOMETRY

Array Types are fully supported and mapped as arrays of the respective element's DTS type.

Table Types are also fully supported and mapped as DTS objects which reflect the table type's
column structure.

 Currently Unsupported Native Types:
blob, clob, nclob, text, bintext

 See also
DTS Types

4.7.3 Geometry

SAPHana uses the ST Geometry format.

 The available geometry types in Hana are st_geometry and st_point, but they are functionally
identical (w ith STPoint being restricted to point geometries). As such, DTS treats them identically.

218

156

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Geometry Types

Here is how SAP Hana (ST) geometry subtypes map to GeoJson geometry types.

ST Subtype Interpretation GeoJson Geometry Type

POINT Single point Point

MULTIPOINT Multiple points MultiPoint

LINESTRING Sequence of straight lines without gaps LineString

CIRCULARSTRING Sequence of circle arcs without gaps LineString + DTS
corrections

MULTILINESTRING Multiple LINESTRINGs (not necessarily
connected)

MultiLineString

COMPOUNDCURVE Sequence of connected LINESTRINGs and
CIRCULARLINESTRINGs

MultiLineString + DTS
corrections

POLYGON Polygon (with or without holes) Polygon

CURVEPOLYGON Polygon whose boundaries can contain circle
arcs

Polygon + DTS corrections

MULTIPOLYGON Multiple POLYGONs MultiPolygon (+ DTS
corrections)

GEOMETRYCOLLECT
ION

Collection of any of the above GeometryCollection (+
DTS corrections)

Z and M modifiers (e.g. POINT Z) are supported for all geometry types (except
GEOMETRYCOLLECTION where they are not applicable), but the M values are always ignored and
processing geometries with Z values has certain limitations .

 Further reading:
§ SAP HANA Spatial Reference
§ DTS Geometry Overview

4.7.4 Tables and Views

The DTS SAP Hana Connector fully supports all tables (column-based and row-based) and views
in SAP Hana and does not differentiate between them in any meaningful way.

158

222

https://help.sap.com/doc/9db42d044f8e415180d4a4475873b50a/2.0.04/en-US/SAP_HANA_Spatial_Reference_en.pdf

157

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

DTS Naming

DTS Name <table_or_view_name>

DTS Key <schema_name>.<table_or_view_name>

Metadata

The connector is also capable of extracting metadata regarding the table/view columns:

§ DATA_TYPE_NAME

§ LENGTH

§ SCALE

§ DEFAULT_VALUE

§ IS_NULLABLE

§ POSITION

§ CONSTRAINT -> PRIMARY_KEY

Standard functionality only makes use of DATA_TYPE_NAME, POSITION and PRIMARY_KEY, but
the other items are available for extension in DTS descriptor objects.

 Structured types (table types) are not supported as column data types by SAP HANA, only native and array types
are. Please see Types for information of how the connector handles these.

4.7.5 Routine Calls

The DTS SAP Hana Connector supports remote calls for any SAP Hana stored procedures and
functions, scalar-valued as well as table-valued.

DTS Naming

DTS Name <proc_or_func_name>

DTS Key <schema_name>.<proc_or_func_name>

154

158

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Arguments and Results

§ Table type arguments to functions and procedures, as well as results of table-valued functions
are fully supported for remote calling

o The table arguments are always passed through DTS as arrays of custom objects, each
object representing a row in the input table

o The result of a table-valued function is always a DTS stream

 See Streams

§ SAP Hana does not have a way of representing a single custom object, other than a table with a
single row, so that extends to DTS, where they will become arrays with a single element.

For argument and result native and user type mappings, please see Types .

Metadata

The connector is also capable of extracting metadata regarding the arguments and results of a
procedure or function:

§ DATA_TYPE_NAME

§ LENGTH

§ SCALE

§ POSITION

§ PARAMETER_TYPE

§ TABLE_TYPE

§ HAS_DEFAULT_VALUE

§ IS_NULLABLE

Standard functionality only makes use of DATA_TYPE_NAME, POSITION, PARAMETER_TYPE
and TABLE_TYPE, but the other items are available for extension in DTS descriptor objects.

4.7.6 Limitations

§ DB Synonyms are not currently supported.

§ The following native data types are not currently supported:

o blob

220

154

159

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

o clob

o nclob

o text

o bintext

§ Any array types with elements of these native types are not supported.

§ Any table types that contain columns which use these native types are not supported.

§ M (measure) values on "POINT M" or "POINT ZM" geometries are ignored by the connector and
are not passed through.

§ General DTS limitations regarding Z-valued geometries apply. Please see Known Limitations
for more details.

4.8 Smallworld

The Smallworld Connector allows DTS and its clients to access data and functionality in GE
Smallworld environments.

Development Platform Smallworld Magik + Java 8

Deployment Paradigm Docker Container + Prepared SW environment

Metadata Mode Paradigm Remote

DTS_PRODUCER_CATEGORY Smallworld

§ Connection Parameters

§ Environment

§ Types

§ Geometry

§ Collections

§ Method/Procedure Calls

§ Limitations

322

160

160

160

161

163

164

166

181

160

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.8.1 Connection Parameters

Views and Alternatives These parameter pairs represent the dataset views the connector will
access and what alternative will be used for each view.

 At least one View-Alternative pair must be registered for the connector to be able to find items in
the Smallworld datasource

 Multiple pairs w ith the same View name are not supported (i .e. only one Alternative can be
registered for each View)

4.8.2 Smallworld Environment

[NEEDS DETAILING]

This section explains how to prepare a Smallworld environment for running the DTS Smallworld
Connector.

Multiple approaches are possible, and others may be favored depending on the broader
environment, but we'll go through the simplest one to better illustrate what's necessary.

For a more tailored solution, please contact support.

1. Smallworld Image

The image the connector will use needs to be open, with access to the desired datasets, and have
all the necessary modules loaded for using the dataset objects.

2. Loading the Connector Product

The Smallworld connector product and module need to be loaded into the already open image.

3. Setting environment variables

4. Registering Functionality

Any procedures or methods that the connector should be aware of should now be registered , as
well as their type dependencies.

5. Starting the Connector

The connector can now be started using this command:

166

161

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

dts_manager.activate_producer()

6. Putting it together

To automate this process for normal use, steps 2-5 should be added to a script:

Finally, an alias should be created to open the image and run the script on startup:

Integrating with DTS

To allow DTS to control instances of this connector, the connector container must be set up to
access this Smallworld Environment.

4.8.3 Types

Smallworld Type DTS Type

char16_string STRING

char16_vector STRING

char16_vector_vec STRING

string STRING

ds_lbyte_charvec STRING

ds_char16_vector STRING

ds_char STRING

ds_char_vec STRING

ds_charci STRING

ds_charci_vec STRING

ds_char16 STRING

ds_char16_vec STRING

ds_char16canon STRING

ds_char16canon_vec STRING

extdb_string STRING

extdb_char STRING

extdb_char_vec STRING

text_join STRING

ds_byte UNSIGNED_INT8

ds_short INT16

ds_ushort UNSIGNED_INT16

162

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

integer INT32

ds_int INT32

ds_uint UNSIGNED_INT32

ds_long INT64

ds_int64 INT64

ds_uint64 BIG_INTEGER

bignum BIG_INTEGER

ds_float FLOAT

ds_double DOUBLE

float DOUBLE

ds_double_as_int DOUBLE

ds_bool BOOLEAN

ds_kleene STRING

symbol STRING

ds_date DATE

date DATE

date_time DATE_TIME

ds_time TIME

ds_simple_time TIME

gis_id UNSIGNED_INT32_VECTOR

gis_id64 UNSIGNED_INT64_VECTOR

simple_point DTS_POINT_GEOMETRY

point DTS_POINT_GEOMETRY

simple_chain DTS_CHAIN_GEOMETRY

chain DTS_CHAIN_GEOMETRY

simple_area DTS_AREA_GEOMETRY

area DTS_AREA_GEOMETRY

text (geometry) DTS_ANNOTATION_GEOMETRY

Slotted exemplar types need to be registered, but they are only relevant for Method/Procedure
Calls and are discussed there.

Join types are automatically generated, but they are only relevant for Collections and are
discussed there.

 See also
DTS Types

166

164

218

163

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.8.4 Geometry

The DTS Smallworld Connector can access access geometries in the native Smallworld storage
formats when streaming data from Collections and exchanges them using its own Magik wrappers
for Method/Procedure Calls.

Here are the mappings:

Smallworld Geometry (DS
type)

DTS Magik Wrapper (DTS
Type)

GeoJson Geometry Type

point/simple_point dts_point
(DTS_POINT_GEOMETRY)

Point

chain/simple_chain dts_chain
(DTS_LINE_GEOMETRY /
DTS_MULTILINE_GEOMETRY)

LineString / MultiLineString (+
DTS Corrections)

area/simple_area dts_area
(DTS_AREA_GEOMETRY /
DTS_MULTIAREA_GEOMETRY
)

Polygon / MultiPolygon (+ DTS
Corrections)

text dts_text
(DTS_ANNOTATION_GEOMET
RY)

Point (+ DTS Extras)

Smallworld differentiates between networked (topologically embedded) and simple (with no
topology) geometries. The Smallworld Connector removes that distinction, as there is no standard
for codifying topological data. It is still available in raw form if desired.

Smallworld chain and area geometry objects can encode multiple disconnected lines and polygons
respectively, so they can result in the simple or "Multi" variant as they are streamed out.

When accessing Collections with geometry fields through the Smallworld Connector, the
geometries are automatically transmuted through their respective DTS Magik Wappers and
serialized as DTSGeoJson - no extra action is needed.

When using geometries within Method or Procedure arguments or results, the respective items
must be registered with their DTS Type (see Method/Procedure Calls). They will receive and
provide geometry data in the DTS Magik Wrapper format. For convenience, the DTS Magik
Wrapper exemplars provide the following methods:

§ new_from(<a_geom>) : creates a new instance of a DTS Magik Wrapper with all the usable
characteristics of the input geometry. Both ds and pseudo geometries are accepted.

164

166

164

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

§ as_pseudo_[point|chain|area|text]() : transforms the DTS Magik Wrapper object into the
corresponding pseudo geometry (pseudo_point, pseudo_chain, pseudo_area, pseudo_text).

Smallworld geometries can encode more information than standard GeoJson can accommodate,
so the Connector uses DTS Geometry Corrections and Extras to include that data:

§ (simple_)points can be oriented in Smallworld. The Connector uses the DTSGeoJson
orientation field to encode this information.

§ texts are oriented points with extra information like justification and the actual content string. This
extra information is placed in the extras field of the DTSGeoJson.

§ (simple_)chains and (simple_)areas can contain sectors that are not straight line strings. These
will be approximated for standard use and the exact representation included in the DTSGeoJson
corrections field as follows:

Smallworld Sector
Type

Interpretation Correction Line Type

sector Basic sector, represents a straight line string none (LINE_STRING*)

arc Single elliptical arc CP_ARCS or NURBS **

circle Circle CIRCLE

rational_b_spline Rational B-spline NURBS

 sector_z is not currently supported (i .e. only 2D geometries are currently supported)

 * LINE_STRING corrections are not produced by this connector or any of the other standard
connectors. It ex ists for ex tensions and optimization.

 ** If the arc is circular, i t results in a CP_ARCS correction, otherw ise it's encoded as NURBS.
Multiple CP_ARCS corrections may be compounded into a single one.

 Further reading:
§ DTS Geometry Overview

4.8.5 Collections

The DTS Smallworld Connector provides access to all collections in the requested DS Views (for
the given alternatives), with the following exceptions:

§ internal collections (e.g. join intermediate tables, geometry storage tables, etc.);

222

165

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

§ drawing and raster collections (dimensioning, raster_map, background_raster, logo,
function_geometry, drawing_template, drawing_function).

DTS Naming

DTS Name <collection_name>

DTS Key <view_name>.<collection_name>

Fields

The Smallworld Connector handles various fields as follows:

§ Physical Fields: All physical fields of known types are supported, except internal fields, which
are ignored.

§ Logical Fields: Derived fields are treated like physical fields, so the same rules apply.

 Logical Field return values are not type-enforced in Smallworld in any way
The Connector relies on the types declared for the field in its metadata (case), but has no way to verify that the

method associated to the field always returns the declared type. If there are discrepancies, this can cause errors while
streaming data!

§ Geometry Fields: All geometry fields are supported except dimension and raster fields, which
are ignored.

§ Join Fields: Homogeneous join fields of all cardinalities (0:0, n:1, m:n, etc.) are supported, but
heterogeneous join fields currently are not.

o The Smallworld Connector packages join field values according to result multiplicity (i.e.
whether more than one result can be expected):

· Single Result: The join value offered through DTS will be a single Minimal Record * for
the collection targeted by the join. (e.g.: n:1, 0:1)

· Multiple Results: The join value offered through DTS will be an array of Minimal
Records * for the collection targeted by the join. (e.g.: m:n, 1:n)

 * A Minimal Record is a record from a collection containing only the fields which compose
the primary key. It serves as an identifier, or a foreign key.

 Text join fields are treated l ike physical fields and w il l be populated w ith a STRING

Metadata

161

166

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

The Smallworld Connector includes the following field metadata in the DTS descriptor structures:

§ type

§ type_size

§ mandatory? (can_be_unset)

§ simple_geometry

4.8.6 Routine Calls

Since a Smallworld image is a large development environment, it is not feasible to automatically
extract available methods and procedures. There are simply too many, and the vast majority will be
unrelated to the desired functionality.

Further more, method and procedure declarations in Magik do not specify the types of the
arguments and returns (Magik is a weak-typed language), so even given a method and procedure,
its parameters cannot be automatically mapped.

As a result, the DTS Smallworld Connector expects that any method or procedure it should be
aware of will be pre-registered.

DTS Naming

DTS Name <registered_dts_key>

DTS Key <registered_dts_key>

4.8.6.1 Registration

The Smallworld Connector provides a set of methods for the purpose of registering routine objects.
These methods should be used in a registration script that is executed after the Connector is
loaded into the Smallworld image and before the Connector is activated (see Environment).

A. Exemplar Type Registration

dts_manager.register_type(
p_dts_key,

160

167

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

p_exemplar,
p_slots)

§ p_dts_key: the key by which this type will be known throughout DTS

§ p_exemplar: the slotted exemplar the type describes (this should be the actual exemplar, not just
its name)

§ p_slots: the slots on the exemplar that should be included in the type as a vector of this form:

{
 {<name>, <dts_type>, <options>...},
 ...
}
o <name>: the name of the slot on the exemplar

o <dts_type>: the DTS type key for the slot. Can be a pre-defined type , or a compound
type that has already been registered using this method or the next one.

o <options>...: a list of key-value pairs defining various options for the slot

· The only option currently supported is :is_vector?, which expects a value of _false
or _true and determines if the parameter is a <dts_type> or an array of
<dts_type>. If not provided, the default is _false.

 The Smallworld Connector w il l strictly adhere to the types it is instructed to used on each slot. If i t
is provided w ith a different object type, communication may fai l .

B. DS Type Registration

dts_manager.register_ds_type(
p_dts_key,
p_collection,
p_fields)

§ p_dts_key: the key by which this type will be known throughout DTS

§ p_collection: the collection that this type describes (this should be a handle on the actual
collection, not just its name)

§ p_fields: the fields from p_collection that should be included in the type as a vector of field
names:

{<field1>, <field2>, ...}

C. Remote Call Registration

dts_manager.register_api_call(
p_dts_key,
p_name,

161

168

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

p_parameters,
p_results,
_optional p_options)

§ p_dts_key: the key by which the remote call will be known throughout DTS

§ p_name: the name which will be used to invoke the method or procedure locally

§ p_parameters: the input parameters of the method/procedure as a simple_vector of this form:

{
 {<dts_type>, <options>...},
 ...
}
o <dts_type>: the DTS type key for the parameter. Can be a pre-defined type , or a

compound type that has already been registered using one of the type registration
methods

o <options>... : a list of key-value pairs defining various options for the parameter.

· The only option currently supported is :is_vector?, which expects a value of _false
or _true and determines if the parameter is a <dts_type> or an array of
<dts_type>. If not provided, the default is _false.

§ p_results: the outputs of the method/procedure, in the same form as p_parameters, except:

o Single results can also use the :stream? option with a value of _true or _false, which
determines whether the routine will produce a stream output.

 Routines that have a result marked as stream, should only have that single result - registering
multiple results w il l cause errors.

 For more information regarding stream-valued routines in Smallworld, please see the dedicated
documentation page .

§ p_options: a property_list containing various options for the remote call

o :procedure? : (_true or _false) represents whether or not this call is to a procedure. If
_false, the call is to a method and a :target option is also expected. The default value is
_true.

o :target : the name of the exemplar which will be used to invoke the method.

 Methods are invoked statically on the exemplar provided in p_options[:target], so it should
function as a singleton in when receiving the p_name message

 p_name and p_options[:target] should be ful ly qualified w ith the package name, as well as
brackets (i f required)

161

169

169

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

 The Smallworld Connector w il l strictly adhere to the types it is instructed to used on each
parameter. If i t is provided w ith a different object type, communication may fai l .

4.8.6.2 Stream Results

For a Magik routine (method or procedure) to produce a stream for DTS, it must return only one
result and it must be a stream-type object .

DTS considers any object that responds to close() and get_upto_n() to be a stream-type object .

While certain existing Magik constructs like record_stream , difference_stream and others do satisfy
the stream-type object criteria, DTS also provides its own stream wrapper
(dts:dts_record_stream) for generating streamable responses.

dts:dts_record_stream provides the following constructor methods:

A. For Wrapping Collections:

dts_record_stream.new_for_collection(
p_id,
p_collection,
_optional p_predicate)

· p_id: is ignored in when the method is used in this scenario;

· p_collection: the collection to stream from;

· p_predicate: a predicate to query the collection. If unset, the entire collection will be streamed.

Example:

_global stream_example1 <<
_proc @stream_example1 ()

_local collection << gis_program_manager.cached_dataset(:gis).collection(:min_road)
_return dts:dts_record_stream.new_for_collection(_unset, collection, predicate.eq(:road_type, "A-Road"))

_endproc
$

 In this case, we would need to register a min_road DS type w ith DTS first, then register the routine
call returning a stream of min_road types.

B. For Wrapping Other Streams:

dts_record_stream.new_for_stream(

170

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

p_stream)

· p_stream: a stream-type object

 While i t may seem somewhat redundant to wrap a stream-type object into a dts_record_stream,
we recommend this to be done whenever feasible due to better compliance of the dts_record_stream
objects w ith the DTS engine

Example:

_global stream_example2 <<
_proc @stream_example2 ()

_local stream << gis_program_manager.cached_dataset(:gis).collection(:min_road).read_stream()
_return dts:dts_record_stream.new_for_stream(stream)

_endproc
$

C. For Wrapping Vectors:

dts_record_stream.new_for_vector(
p_vector)

· p_vector: a Magik vector-type object (must respond to subseq() and size) to be wrapped into a
stream.

Example:

_global stream_example3 <<
_proc @stream_example3 (p_size)

_local vector << rope.new()
_for i_index _over 1.upto(p_size)
_loop

vector.add(some_object.new(i_index))
_endloop
_return dts:dts_record_stream.new_for_vector(vector)

_endproc
$

 In this case, we would to register an exemplar type for some_object w ith DTS, then register the
routine call returning a stream of some_object types.

4.8.6.3 Registration Example

_package user

171

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

##############################
Count underground routes
##############################

Here's our mockup procedure

_global !count_all_underground_routes! <<
_proc @!count_all_underground_routes!()

_local v << gis_program_manager.cached_dataset(:gis)
_return v.collection(:underground_route).size

_endproc
$

This procedure can be registered directly, since it only uses a predefined type

dts_manager.register_api_call("count_all_underground_routes", "user:!count_all_underground_routes!",
 {},
 {

 {dts:dts_type_mapping.uint32}
 })

$

###################################
Get routes in the given area
###################################

Another one - a bit more complex

_global !get_uroute_ids_in_area! <<
_proc @!get_uroute_ids_in_area!(p_area, p_max_size)

_local v << gis_program_manager.cached_dataset(:gis)
_local l_area << _if p_area.is_class_of?(dts:dts_area)

 _then >> pseudo_area.new_for_world(p_area.as_pseudo_area(), v.world)
 _else >> pseudo_area.new_for_world(p_area, v.world)
 _endif

_local rts << v.collection(:underground_route).select(predicate.within(:route, l_area))
_local rt_ids << rope.new()
_local idx << 1
_for rt _over rts.fast_elements()
_loop

_if idx > p_max_size _then _leave _endif
rt_ids.add(rt.id)
idx +<< 1

_endloop
_return rt_ids.as_simple_vector()

_endproc
$

172

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

This procedure also used only predefined types, but has arguments and returns an array

dts_manager.register_api_call("get_uroute_ids_in_area", "user:!get_uroute_ids_in_area!",
 {

 {dts:dts_area.dts_type_key},
 {dts:dts_type_mapping.uint32}

 },
 {

 {dts:dts_type_mapping.uint32, :vector?, _true}
 })

$

###
Get details about underground route
###

For this one, we'll need some custom objects, which we define here:

def_slotted_exemplar(:cable_info,
{

{:id, _unset, :writable, :public},
{:name, _unset, :writable, :public},
{:kind, _unset, :writable, :public},
{:length, _unset, :writable, :public}

})
$

_method cable_info.new()
_return _clone.init()

_endmethod
$

_private _method cable_info.init()
_return _self

_endmethod
$

def_slotted_exemplar(:uroute_info,
{

{:uroute_record, _unset, :writable, :public},
{:cable_infos, _unset, :writable, :public}

})
$

_method uroute_info.new()
_return _clone.init()

_endmethod
$

173

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

_private _method uroute_info.init()
_return _self

_endmethod
$

And here is the procedure

_global !get_uroute_details! <<
_proc @!get_uroute_details!(p_id)

_local v << gis_program_manager.cached_dataset(:gis)

_local uroute << v.collection(:underground_route).at(p_id)

_local response << uroute_info.new()
response.uroute_record << uroute

_local cbls << rope.new()
_for c _over uroute.mit_structure_route.mit_cables.fast_elements()
_loop

_local cbl << cable_info.new()
_if c.copper_cable _isnt _unset
_then

cbl.id << c.copper_cable.id
cbl.name << c.copper_cable.name.write_string
cbl.kind << "copper"
cbl.length << c.copper_cable.calculated_length.as_float

_elif c.sheath_with_loc _isnt _unset
_then

cbl.id << c.sheath_with_loc.id
cbl.name << c.sheath_with_loc.name.write_string
cbl.kind << "fiber"
cbl.length << c.sheath_with_loc.calculated_fiber_length.as_float

_else
cbl.id << c.id
cbl.name << "uninteresting cable"
cbl.kind << "irrelevant"
cbl.length << _unset

_endif
cbls.add_last(cbl)

_endloop
response.cable_infos << cbls.as_simple_vector()
_return response

_endproc
$

First, we register a DS type for :underground_route with the fields we're interested in

174

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

dts_manager.register_ds_type("dts_uroute", gis_program_manager.cached_dataset(:gis).collection(:underground_route),
 {

 "id",
 "construction_status",
 "underground_route_type",
 "route"

 })
$

Then, we register slotted exemplar types for our cable_info and uroute_info exemplars
Note how uroute_info refers to cable_info. The referrer always must come after the referred!

dts_manager.register_type("cable_info", cable_info,
 {

 {"id", dts:dts_type_mapping.uint32},
 {"name", dts:dts_type_mapping.string},
 {"kind", dts:dts_type_mapping.string},
 {"length", dts:dts_type_mapping.float}

 })
$

dts_manager.register_type("uroute_info", uroute_info,
 {

 {"uroute_record", "dts_uroute"},
 {"cable_infos", "cable_info", :vector?, _true}

 })
$

Finally, we can register the routine

dts_manager.register_api_call("get_uroute_details", "user:!get_uroute_details!",
 {

 {dts:dts_type_mapping.uint32}
 },
 {

 {"uroute_info"}
 }

)
$

############
Method
############

To have a method to call, we need a singleton exemplar

def_slotted_exemplar(:test_singleton, {})
$

175

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

And a test method

_method test_singleton.test_multi(p_string, p_int)
_return (p_string, p_int, 0.003)

_endmethod
$

Here's how we register it
Notice that we populated to options in order to tell the connector that it's a method and what the target exemplar is

dts_manager.register_api_call("test_singleton.test_multi", "test_multi()",
 {{dts:dts_type_mapping.string}, {dts:dts_type_mapping.uint32}},
 {{dts:dts_type_mapping.string}, {dts:dts_type_mapping.uint32}, {dts:dts_type_mapping.double}},
 property_list.new_with(:procedure?, _false, :target, "user:test_singleton"))

$

#######################
Streaming Routine
#######################

First, we need an exemplar for the stream elements

def_slotted_exemplar(:test_item,
{

{:part1, _unset, :writable, :public},
{:part2, _unset, :writable, :public}

}, {})
$

_method test_item.new(a_string, an_int)
_return _clone.init(a_string, an_int)

_endmethod
$

_private _method test_item.init(a_string, an_int)
.part1 << a_string
.part2 << an_int
_return _self

_endmethod
$

We register the type with DTS

dts_manager.register_type("test_item", test_item,
 {{"part1", dts:dts_type_mapping.string},

176

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

{"part2", dts:dts_type_mapping.int32}})
$

Here is our procedure that returns a stream of test_items

_global !streamy_fun_test! <<
_proc @!streamy_fun_test!(p_size)

_local v << rope.new()
_for i _over 1.upto(p_size)
_loop

v.add(test_item.new(write_string(i), i))
_endloop
_return dts:dts_record_stream.new_for_vector(v)

_endproc
$

And finally we register the procedure with DTS

dts_manager.register_api_call("streamy_fun_test", "user:!streamy_fun_test!",
 {{dts:dts_type_mapping.int32}},
 {{"test_item", :stream?, _true}})

$

4.8.7 Smallworld Client

The same fileset used for the Smallworld Connector also provides Client functionality. This
allows you to access the resources included in a DTS project from the Magik console or from Magik
code.

Preparation

The Smallworld Client is enabled using the following steps:

· Open a Smallworld image - anything based on swaf (or swaf itself) is sufficient;

· Load the DTS Smallworld product and module in the image;

· Set the environment variables for accessing DTS:

Variable Value

DTS_JAVA_HOME The path to the Java binary directory

DTS_DIST_HOME The path to the Smallworld Connector's jars directory

213

177

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

DTS_REDIS_HOST_NAMEThe hostname or IP address of the Redis server (default is localhost)

DTS_REDIS_PORT The port for the Redis server (default is 6379)

 Being based on the Client Java Library , the Smallworld Client also responds to al l other
environment variables specified there.

 If the security scheme is enabled in the DTS cluster, the Smallworld Client must also implement i t.
See Security Setup for detai ls.

· Boot the client:

Magik> dts_manager.activate_consumer("<project_name>")

API

Once the Client is booted, you have access to the dts_remote_manager singleton exemplar

where you can begin accessing resources.

Here are the currently available methods for dts_remote_manager:

Method Result

connectors equality set of the available connectors (dts_remote_connector),

keyed by name

Each connector entry value is a dts_remote_connector, where you can access:

Method Result

collections equality set of the available collections for the connector
(dts_remote_collection), keyed by native identifier

functions equality set of the available routines for the connector
(dts_remote_function), keyed by native identifier

topics equality set of the available topics for the connector
(dts_remote_topic), keyed by native identifier

For a dts_remote_collection, you can call:

Method Result

257

252

178

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

get_record(_optional p_predicate)the first record in the collection (that matches the predicate)

p_predicate can be any regular Magik predicate or a dts_predicate

get_records(p_size, _optional p_predicate)the first p_size records in the collection (that match the predicate)

get_record_stream(_optional p_predicate)opens a stream on the collection (using the predicate) and returns it as a
dts_remote_record_stream object

descriptor returns the dts_type_descriptor (see below) object that describes the

collection

For a dts_remote_topic, you can call:

Method Result

subscribe(_optional p_group_id, p_properties)subscribes to the topic and returns a dts_remote_record_stream

object

p_group_id must be a a string and p_properties can be a property_list

or equality_property_list

push(p_key, p_msg)pushes the p_key , p_msg pair to the Topic and returns DONE or raises a
condition

push_lists(p_keys, p_msgs)pushed all pairs p_keys[i] , p_msgs[i] to the Topic and returns DONE or
raises a condition

push_properties(p_properties)pushes all key-value pairs in p_properties (which should be a
property_list or equality_property_list) and returns DONE or

raises a condition

descriptor the descriptor for the topic as a dts_topic_descriptor

record_wrapper_descriptorthe dts_type_descriptor for the topic's stream records

For a dts_remote_record_stream, you can call:

Method Result

get() gets a single record from the stream

get_upto_n(p_size) gets p_size records from the stream or how many are left if less than
p_size

239

179

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

poll() special implementation of get_upto_n() for Topics with no size and no
has_more? impact

has_more? whether or not there are more records to get from the stream (for Topic
streams it always returns _true)

close() closes the stream

unsubscribe() same as close() but in Topic vernacular

For a dts_remote_function, you can call:

Method Result

execute(_gather p_args)executes the remote routine using the provided arguments (p_args) and
returns the results

input_wrapper_descriptorreturns the dts_type_descriptor (see below) object that describes

the inputs of the routine (in the form of a wrapper object whose
attributes are the actual inputs)

output_wrapper_descriptorreturns the dts_type_descriptor (see below) object that describes

the outputs of the routine (in the form of a wrapper object whose
attributes are the actual inputs)

For remote collection and routine metadata, dts_type_descriptor objects provide the

following:

Method Result

key the type key of the resource structure

attributes a simple_vector containing the resource structure's attributes as
dts_attribute_descriptor objects

stream_exemplar the Magik exemplar used for wrapping resource structures of this type
for ACPT data marshalling

Each dts_attribute_descriptor provides the following:

Method Result

180

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

name the name of the attribute

type the type key of the attribute

category the type category of the attribute

details details regarding the attribute as a simple_vector of
dts_attribute_detail objects, each answering to .name and
.info

get_detail_info(p_detail_name)returns the value of the detail identified by p_detail_name

can_be_unset? returns whether or not the attribute can be _unset (i.e. the value of the
"unset?" detail)

is_vector? returns whether or not the attribute is a vector (i.e. the value of the
"vector?" detail)

Each dts_topic_descriptor provides the following:

Method Result

key the native identifier of the topic

record_wrapper_type_keythe type key for the topic's stream record

key_type_key the type key for the topic's key field

msg_type_key the type key for the topic's msg field

Sometimes, attributes can have type keys that represent other slotted (structure) types. To access
the dts_type_descriptor for any type key, you can use:

Magik> dts:dts_types_repository.types["<type_key>"].descriptor

Shutdown

To disconnect from DTS , use:

Magik> dts_manager.shutdown()

The Smallworld Client will automatically shutdown whenever quit() is invoked in the Smallworld

session.

181

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Other Considerations

· The DTS Smallworld Client keeps processes running in the background. In the event of an
improper shutdown of the session, these processes can be left orphaned and impede
subsequent client operations. In such situations, it is recommended that sw_magik and java
processes running on the machine are audited and manually stopped as necessary.

· The Magik language is weakly typed, so there is not type enforcement on objects fed as
parameters for the routines and collection operations DTS makes available. Most often, improper
types will be met with ACPT exceptions generated by the Smallworld data marshalling engine that
the Smallworld Connector employs.

4.8.8 Limitations

§ Only one alternative can be available for any given dataset view

§ 3D geometries are not currently supported

§ Heterogeneous joins are not currently supported and are filtered out

4.9 Web Serv ice

The Web Service Connector allows DTS and its clients to access functionality from REST and
SOAP Web Services.

Development Platform Java 8 (Apache CXF client generation)

Deployment Paradigm Docker Container

Metadata Mode Paradigm Local

DTS_PRODUCER_CATEGORY WebService

§ Connection Parameters

§ Types

§ Method Calls

§ Limitations

182

182

183

184

182

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

4.9.1 Connection Parameters

URL The URL to the Web Service's specification file.

For SOAP services, this is a WSDL specification.

For REST services, this can be an OpenAPI/Swagger (json or yaml)
or a WADL specification.

Username Username for the user through which DTS will connect to the service.
Only required for services which require login authentication.

Password Password for the user.

Token The token or application id to be used for accessing the service. Only
required for services with token authentication.

 The URL must point directly to the specification fi le (e.g. "https://my.site/service/openapi.json").

 The URL can also be an absolute network path accessible from inside the DTS Docker containers
(e.g. " //a_machine/share/service.wsdl") or a local path inside the container that is mapped to a host
path (e.g. " /usr/local/wss/producer/openapi.json").

 Username and Password authentication is currently supported only as standard Basic
Authentication.

 While most SOAP services have a WSDL specification attached (most application servers generate
it upon deployment), this is not necessari ly the case for OpenAPI/Swagger, WADL and REST.
 Depending on the service you are looking to consumer, it may be necessary to manually create a specification file for
it. We recommend using OpenAPI 3.0 in this case. The OpenAPI documentation can help guide that process.

4.9.2 Types

The DTS Web Service Connector uses wsdl2java, wadl2java (from Apache CXF) and openapi-
generator to generate Java client classes for consuming SOAP and REST web services.

As such, initial type mapping is done by these tools, from the declared specification types to Java
object types. The connector then maps the resulting Java base types to DTS types as follows:

Java Type DTS Type

Object STRING

String STRING

XMLGregorianCalendar DATE_TIME

LocalDate DATE_TIME

Byte/byte INT8

https://swagger.io/specification/

183

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

Short/short INT16

Integer/int INT32

Long/long INT64

Float/float FLOAT

Double/double DOUBLE

Boolean/boolean BOOLEAN

BigInteger BIG_INTEGER

BigDecimal DECIMAL

Duration STRING

QName STRING

byte[] BYTE_VECTOR

Any complex object structure that can resolve down to these base types is fully supported.

 While other connectors use DTS's own Java class generation engine, the Web Service Connector
rel ies on CXF and openapi-generator for this task.
This ensures the best possible compliance with increasingly complex and heterogeneous web standards.

 Further reading
XSD (WSDL, WADL) - Java Type Mappings
OpenAPI Data Types

 See also
DTS Types

4.9.3 Routine Calls

The DTS Web Service Connector supports remote calls for any Web Methods exposed by a SOAP
or REST service as long as they are correctly described in the specification document.

DTS Naming

DTS Name <web_method_name>

DTS Key <port_name>.<web_method_name>

For WSDL specifications, the <port_name> and <web_method_name> are extracted directly
from the specification document as the name attributes of the portType nodes and the name
attributes of the operation nodes respectively.

218

https://xmlbeans.apache.org/docs/3.0.0/guide/conXMLBeansSupportBuiltInSchemaTypes.html
https://swagger.io/docs/specification/data-models/data-types/

184

DTS Product Manual © 2023 Realworld Systems B.V.

Connectors

For OpenAPI/Swagger and WADL specifications, method and port (actually the client class in this
case) naming is left to the respective generator tools (openapi-generator, wadl2java), which use
tags, operation types and operation ids to generate the names.

Requests and Responses

The Web Service Connector, via its Apache CXF core, will make requests and expect responses
for Web Method Calls in the document formats that the specification file calls for.

Any combination of REST and SOAP on one hand and application/xml and application/json on
the other are supported by the engine, with the FasterXML/jackson library being used for (de)
serialization.

 Further reading
OpenAPI v3 Specification
OpenAPI v2 (Swagger) Specification
WADL Specification
WSDL Specification
Apache CXF

4.9.4 Limitations

§ There is no bespoke geometry support in the Web Service Connector. None of the Web Service
specification standards used have special provisions for geometry types, as such, any geometry
object will be described in terms of the simpler types it contains.

https://github.com/FasterXML/jackson
https://swagger.io/specification/
https://swagger.io/specification/v2/
https://www.w3.org/Submission/wadl/
https://www.w3.org/TR/wsdl/
https://cxf.apache.org/docs/index.html

Webservices

186

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

5 Webserv ices

DTS has the capability to generate Web Clients for its projects without any programming
intervention. These Clients simplify access to DTS data for any system that is capable of
performing REST or SOAP Web Requests.

This chapter explains how DTS generates and manages Webservices, what features they can
provide and how to integrate them into your business process.

The following topics will be approached:

· Types

· Functionality

· Specification

· Access

· Integration

 For information on how to create and deploy Webservices from the Web UI, see Web UI -
Webservices

5.1 Types

DTS can currently generate two types of services: REST and SOAP.

The type you should use largely depends on your integration necessities. If you are in doubt
about what type of service you should generate in a specific case, please contact support for more
information.

This section lists some particularities of each service type as generated by DTS.

REST

· Implements the REST API using Apache CXF over JAX-RS;

· Communicates in JSON format;

· Provides GET operations where possible (the input parameters are compatible with URL
parametrization, i.e. STRING and INTEGER variants) - see Functionality for specifics;

186

187

195

195

199

70

199

187

187

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

· Provides specifications in WADL and OPENAPI 3.0 formats;

· Is less strict in the interpretation of input and output formats.

 Read more about REST APIs

SOAP

· Implements the SOAP API using Apache CXF over JAX-WS;

· Communicates in XML format;

· Requests are always in the form of documents - see Functionality for specifics;

· Provides specifications in WSDL format;

· Is more strict in the interpretation of input and output formats.

 Read more about SOAP APIs

5.2 Functionality

DTS Webservices provide access to DTS Client features by wrapping them in standard REST
or SOAP operational protocols.

Connection and Setup

DTS Webservices fully automate the steps the Client uses for connecting to the DTS core modules
and setting up for general operation. They are generated with the specific parameters (as
configured) hard-coded inside them, thus requiring no initial input from the user.

DTS Webservices are enabled upon deployment, but do not immediately connect to the DTS core
modules. Instead, they do so when the first request comes in. This provides more flexibility in
deployment and keeps the application server more independent of the DTS core.

 Typically, the initial request receives a "500 - Internal Server Error" reply

This error states that the required Endpoint is not ready for use and will persists until the service has completed the
initialization procedures and is connected to the respective producer. Subsequent requests will function normally.
During normal operation, this same error signals that the targeted data producer is no longer available and the
request cannot be serviced.

Remote Routine Calls

195

187

195

213

https://restfulapi.net/
https://www.w3.org/TR/soap/

188

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

Remote routines (methods, procedures, functions) included in the Webservice will be wrapped as
REST or SOAP operations.

REST · Each routine can be wrapped as either a GET or POST call using the setting in
the UI.

 POST is preset and mandatory when at least one of the routine's input parameters
cannot be codified w ithin the request URL as a Query Parameter.
Only STRING and INTEGER types can be query parameters.

· The URL component for invoking the operation is customizable.

· Routines returning streams also provide an option to customize the URL
component of the Get Records from Stream operation.

SOAP · Calls will be wrapped as SOAP operations with parameters fed inside a SOAP
XML request

· The URL for invoking all operations on a service is the same (i.e. the endpoint
URL)

· The operation name is customizable.

· Routines returning streams also provide an option to customize the name of the
Get Records from Stream operation.

 See Access for detai ls on URLs and Operation Naming

 See Webservice Routine Details Drawer for information on interacting w ith Remote Routine
Calls in the Web UI

Collections and Aggregates

When Collections or Aggregates are included in a Webservice, various operations for requesting
records and controlling streams become available.

 Aggregates behave exactly l ike Collections when designing a Webservice

Open Stream with
Inline Parameters

Opens a persistent
stream on a collection
based on Query
Parameters fed through
the URL

REST · GET request

· Supports Query Parameters only for fields that are variants of
STRING and INTEGER types

· Returns a stream_id to be used for record requests

· The URL for invoking the operation is customizable

SOAP N/A

195

86

189

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

Open Stream with
Predicate

Opens a persistent
stream on a collection
based on a Predicate
object

REST · POST request

· Supports queries on all fields, as well as non-equality and
compound queries

· The Predicate is expected as a JSON inside the body of the
request

· Returns a STREAM_ID to be used for record requests

· The URL for invoking the operation is customizable

SOAP · Supports queries on all fields, as well as non-equality and
compound queries

· The Predicate is expected inside the XML SOAP Request

· Returns a SOAP XML Response containing the STREAM_ID to
be used for record requests

· The operation name is customizable

Get Records from
Stream

Requests a batch of
records from a given
stream

REST · GET request

· Has two Query Parameters: stream_id and dts__size

· Will return dts__size records from the stream identified by
stream_id (or however many are left, if less than dts__size)

· The URL for invoking the operation is customizable

SOAP · Expects two parameters in the SOAP REQUEST: stream_id
 and dts__size

· Will return dts__size records from the stream identified by
stream_id (or however many are left, if less than dts__size)

· The operation name is customizable

Stream Has More

Queries whether there
are more records to get
from a given stream

REST · GET request

· Has a single Query Parameter: stream_id

· Returns true or false

· The URL for invoking the method is fixed:

 [SERVICE_URL]/stream-has-more?stream_id=...

239

190

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

SOAP · Expects a single parameter in the SOAP REQUEST: stream_id

· Returns a SOAP response containing true or false for the output
value

· The operation name is fixed: streamHasMore

Close Stream

Requests the closing of
a given stream

REST · GET request

· Has a single Query Parameter: stream_id

· Returns null

· The URL for invoking the method is fixed:

 [SERVICE_URL]/stream-close?stream_id=...

SOAP · Expects a single parameter in the SOAP REQUEST: stream_id

· Returns a SOAP response containing no output

· The operation name is fixed: streamClose

Get Records with
Inline Parameters

Requests a specific
number of records that
satisfy the given Query
Parameters

REST · GET request

· Supports Query Parameters only for fields that are variants of
STRING and INTEGER types

· Aside from the collection fields, the dts__size Query Parameter
is also supported. It specifies how may records should be
retrieved. If not included, it defaults to 1.

· Returns the requested records

· Is equivalent to the following sequence of operations: Open
Stream With Inline Parameters -> Get Records From Stream ->
Close Stream

· The URL for invoking the operation is customizable

SOAP N/A

Get Records with
Predicate

REST · POST request

· Supports queries on all fields, as well as non-equality and
compound queries

191

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

Requests a specific
number of records that
satisfy the given
Predicate

· The Predicate is expected inside a JSON in the body of the
request

· Aside from the Predicate, the dts__size field is also supported in
the request body. It specifies how may records should be
retrieved. If not included, it defaults to 1.

· Returns the requested records

· Is equivalent to the following sequence of operations: Open
Stream With Predicate -> Get Records From Stream -> Close
Stream

· The URL for invoking the operation is customizable

SOAP · Supports queries on all fields, as well as non-equality and
compound queries

· The Predicate is expected inside the XML SOAP Request

· Aside from the Predicate, the dts__size field is also expected in
the SOAP Request. It specifies how may records should be
retrieved. If not included, it defaults to 1.

· Returns a SOAP XML Response containing the requested
records

· Is equivalent to the following sequence of operations: Open
Stream With Predicate -> Get Records From Stream -> Close
Stream

· The operation name is customizable

Get Record for Key

Requests a single
record that is identified
by a given field value
(should be a primary key
or unique field)

REST · GET request

· Supports a single Path Parameter for the Key Field, which must
be a variant of STRING and INTEGER types

· Returns the requested record

· Is equivalent to the following sequence of operations: Open
Stream With Inline Parameters (?key_field=...) -> Get Records
From Stream (dts__size=1) -> Close Stream

· The URL for invoking the operation is customizable

SOAP · Supports a single parameter in the SOAP Request for the Key
Field

239

192

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

· Returns a SOAP XML Response containing the requested
record

· Is equivalent to the following sequence of operations: Open
Stream With Predicate (eq, key_field) -> Get Records From
Stream (dts__size=1) -> Close Stream

· The operation name is customizable

 See Access for detai ls on URLs and Operation Naming

 See Webservice Stream Operations Drawer for information on interacting w ith Remote Routine
Calls in the Web UI

Topics

Each topic included in the Webservice will show including/excluding various operations and
customizing their accessibility.

Subscribe

Subscribes to the topic
using the default
properties and the
group_id provided as a
query parameter

REST · GET request

· group_id is optional - if absent, a unique one will be generated for
this subcription

· Returns a stream_id to be used for poll requests

· The URL for invoking the operation is customizable

· All properties set for the Topic and its Connector are active for
the Subscription

SOAP N/A

Subscribe with
Properties

Subscribes to the topic
using custom properties

REST · POST request

· The properties and the group_id are expected in the body of the
request in JSON format (they are all optional)

· Returns a stream_id to be used for poll requests

· The URL for invoking the operation is customizable

· The provided Properties will be added to the ones set for the
Topic and its Connector and override any with the same key

195

79

193

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

SOAP · Supports queries on all fields, as well as non-equality and
compound queries

· The properties and the group_id are expected inside the XML
SOAP Request

· Returns a SOAP XML Response containing the stream_id to be
used for record requests

· The operation name is customizable

· The provided Properties will be added to the ones set for the
Topic and its Connector and override any with the same key

Poll

Polls a batch of records
from a given
subscription stream

REST · GET request

· Has a single Query Parameter: stream_id

· Will return any records available for the subscription identified by
stream_id (normally all of them, but a maximum number can be
specified during subscription using the properties)

· The URL for invoking the operation is customizable

SOAP · Expects a single parameter in the SOAP REQUEST: stream_id

· Will return any records available for the subscription identified by
stream_id (normally all of them, but a maximum number can be
specified during subscription using the properties)

· The operation name is customizable

Close Stream

Requests the closing of
a given stream

REST · GET request

· Has a single Query Parameter: stream_id

· Returns null

· The URL for invoking the method is fixed:

 [SERVICE_URL]/stream-close?stream_id=...

SOAP · Expects a single parameter in the SOAP REQUEST: stream_id

· Returns a SOAP response containing no output

· The operation name is fixed: streamClose

194

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

Push

Pushes an entry to the
Topic

REST · GET request

· Has two query parameters: key and msg

· It only supports pushing a single entry onto the topic with the key
and message in string format

· The URL for invoking the operation is customizable

SOAP · Expects two parameters in the SOAP REQUEST: key and msg

· It only supports pushing a single entry onto the topic with the key
and message in string format

· The operation name is customizable

Push Many

Pushes multiple entries
to the topic

REST · POST request

· Expects the entries as an array of objects with key and msg
attributes in JSON format. For example:

 [
 {"key": "some_key", "msg": "some_msg"},
 {"key": "another_key", "msg": "another_msg"}
]

· The URL for invoking the operation is customizable

SOAP · Expects an array of objects (arg0) with key and msg sub-
elements in the XML SOAP Request. For example:

 <soapenv:Body>
 <ws:pushMany_some_topic>
 <arg0>
 <ws:key>some_key</ws:key>
 <ws:msg>some_msg</ws:msg>
 </arg0>
 <arg0>
 <ws:key>another_key</ws:key>
 <ws:msg>another_msg</ws:msg>
 </arg0>
 </ws:pushMany_some_topic>
 </soapenv:Body>

· The operation name is customizable

 See Access for detai ls on URLs and Operation Naming195

195

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

 See Webservice Topic Details Drawer for information on interacting w ith Topics in the Web UI

5.3 Specification

All Webservices generated by DTS will provide standard specification files fully describing their
endpoints, access patterns and data schema, regardless of the type of Application Server they are
deployed on.

The flavor and access URLs of these specification files depend on the type of Webservice:

WS Type Spec Type URL Resource

REST WADL [SERVICE_URL]?_wadl https://www.w3.org/Submission/wadl/

OPENAPI 3.0 [SERVICE_URL]/openapi.json
[SERVICE_URL]/openapi.yaml

https://swagger.io/specification/

SOAP WSDL [SERVICE_URL]?wsdl https://www.w3.org/TR/wsdl.html

5.4 Access

This section explains how DTS Webservice functionality is accessed.

All operation URLs for DTS Webservices will have the following form:

[APP_SERVER_URL]/[WEBSERVICE_NAME]/[MAIN_ELEMENT]/[OPERATION_ELEMENTS]

APP_SERVER_URL The URL where the Application Server has its Webservice root

e.g.: http://my.tomcat.srv:8080

WEBSERVICE_NAME The name given to the generated Webservice WAR

e.g.: prj1_coolservice_DEV_v3

MAIN_ELEMENT A required imbrication element that is specified in the Webservice Details
Dialog before deployment

89

186

73

https://www.w3.org/Submission/wadl/
https://swagger.io/specification/
https://www.w3.org/TR/wsdl.html
http://my.tomcat.srv:8080

196

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

e.g.: app

 This element is required by the CXF platform and cannot be omitted, only
customized

OPERATION_ELEME
NTS

A sequence of URL path elements that points to the specific method of the
specific asset to access and which also sets any necessary in-line
parameters. The Asset Elements can be customized using the controls in
the Webservice Asset Details Drawer

Asset elements vary by the service and operation types, and we will detail them here.

SOAP Asset Elements

A DTS SOAP service uses a single endpoint, and therefore a single URL to access all of its
functionality. Details regarding operations and parameters will be included in the SOAP Request
Body.

As such, the OPERATION_ELEMENTS part of the URL for SOAP services is not present, the

endpoint URL resolving to simply:

[APP_SERVER_URL]/[WEBSERVICE_NAME]/[MAIN_ELEMENT]

Example:

http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/app

REST Asset Elements

REST services identify operations through their specific URLs, which can also codify parameter
values in the case of GET requests. We will look at each request type separately.

REST Remote Routine Calls

The OPERATION_ELEMENTS part of a REST Remote Routine Call URL is fully customizable

from the Webservice Routine Details Drawer .

By default, it is [CONNECTOR_NAME]/[NATIVE_ROUTINE_NAME]

If all of the routine's inputs are supported as Query Parameters, this will be a GET request and the
inputs can be fed inline.

Example:

http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/app/postgres/a_complicated_proc?arg1=something&arg2=something_else

78

86

197

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

REST Collection Stream Operations

The OPERATION_ELEMENTS for these operations are split into two parts, both customizable in

the Webservice Stream Operations Drawer .

[URL_PREFIX]/[METHOD_NAME]

URL_PREFIX will apply to the URLs for all operations on a given collection. Its default is
[CONNECTOR_NAME]/[NATIVE_COLLECTION_NAME]

Example (up to and including URL_PREFIX):

http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/app/postgres/nice_table

METHOD_NAME identifies the specific operation to be executed:

Operation Default Example

Open Stream with
Inline Parameters

http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/postgres/nice_table?lastname=Smith

Open Stream with
Predicate

stream-with-pred http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/postgres/nice_table/stream-with-pred

Get Records from
Stream

stream-get http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/postgres/nice_table/stream-get?
stream_id=569caeaf-5445-4912-9047-add75e80c20f
&dts__size=30

Get Records with
Inline Parameters

records http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/postgres/nice_table/records?lastname=Smith&
dts__size=15

Get Records with
Predicate

records-with-pred http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/postgres/nice_table/records-with-pred

Get Record for Key {key} http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/postgres/nice_table/11223344

REST Topic Operations

The OPERATION_ELEMENTS for these operations are split into two parts, both customizable in

the Webservice Topic Operations Drawer .

[URL_PREFIX]/[METHOD_NAME]

79

89

198

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

URL_PREFIX will apply to the URLs for all operations on a given collection. Its default is
[CONNECTOR_NAME]/[NATIVE_TOPIC_NAME]

Example (up to and including URL_PREFIX):

http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/app/kafka/some_topic

METHOD_NAME identifies the specific operation to be executed:

Operation Default Example

Subscribe http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/kafka/some_topic?group_id=some_group

Subscribe with
Properties

subscribe-props http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/kafka/some_topic/subscribe-props

Poll poll http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/kafka/some_topic/poll?
stream_id=569caeaf-5445-4912-9047-add75e80c20f

Push push http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/kafka/some_topic/push?key=some_key&msg=some_msg

Push Many push-many http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/kafka/some_topic/push-many

REST Generic Stream Operations

Stream closing and querying whether a stream has more records are operations which are
independent of the specific collection the stream is opened on, as they only require the stream_id .

As a result, they do not use the COLLECTION_PATH_PREFIX above and are derived from the

base service URL instead.

Operation Default Example

Stream Has More stream-has-more http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/stream-has-more?
stream_id=569caeaf-5445-4912-9047-add75e80c20f

Close Stream stream-with-pred http://my.tomcat.srv:8080/prj1_coolservice_DEV_v3/
app/stream-close?
stream_id=569caeaf-5445-4912-9047-add75e80c20f

199

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

5.5 Integration

DTS produces standard REST/SOAP Webservices which can be used in any desired integration
patterns. This section discusses the prerequisites for deploying and running the services in your
Application Server as well as some ideas regarding Security and Load Balancing.

· Application Server

· Security and Load Balancing

· Logging

5.5.1 Application Server

Preparation

DTS produces Webservices in the form of WebARchives, which contain all the necessary libraries
for the service to run. As such, most Application Servers should be able to deploy and run the DTS
Webservices.

To prepare the Application Server for DTS Webservices, the environment variables which direct
specify the DTS connection point need to be set within the server's configuration files. These
variables are:

DTS_REDIS_HOST_NAMEThe host name for the DTS Redis Server

DTS_REDIS_PORT The port for the DTS Redis Server

DTS_SYNC_INIT [true/false] Whether the Webservice client will initialize the project
synchronously (i.e. delay the first request until initialization is done and a
response can be provided). Default is false.

Different Application Servers will have different ways of setting these variables. Here are some
common examples:

Application Server OS Instructions

Tomcat Linux · edit or create the [CATALINA_HOME]/bin/setenv.sh file

· add the following:

 # DTS
 export DTS_REDIS_HOST_NAME=[...]

199

201

203

200

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

 export DTS_REDIS_PORT=[...]

· save the file and restart Tomcat

Windows · edit or create the [CATALINA_HOME]\bin\setenv.bat file

· add the following:

 # DTS
 set DTS_REDIS_HOST_NAME=[...]
 set DTS_REDIS_PORT=[...]

· save the file and restart Tomcat

JBoss/Wildfly Linux · edit the [JBOSS_HOME]/bin/standalone.sh file

· add the following (preferably at the beginning):

 # DTS
 export DTS_REDIS_HOST_NAME=[...]
 export DTS_REDIS_PORT=[...]

· save the file and restart JBoss/Wildfly

Windows · edit the [JBOSS_HOME]\bin\standalone.bat file

· add the following (preferably at the beginning):

 # DTS
 set DTS_REDIS_HOST_NAME=[...]
 set DTS_REDIS_PORT=[...]

· save the file and restart JBoss/Wildfly

 For instructions regarding other Application Servers, please consult the vendor's documentation.

 If the Application Server is configured together w ith DTS using docker-compose, the environment
variables can usually be set there.

 Being based on the Client Java Library , Webservices also respond to al l other environment
variables specified there.

 Additionally, the DTS Webservice responds to certain environment variables for configuring
specific logging parameters (see Webservice Logging).

 If the security scheme is enabled in the DTS cluster, the Webservice must also implement i t. See
Security Setup for detai ls.

257

203

252

201

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

Exploded Deployment

DTS Webservices need to be able to dynamically load libraries at runtime. While all the required
libraries are bundled inside a service WAR, these need to be accessible after deployment, so the
WAR must be exploded.

Depending on the Application Server and deployment method, this will either be done automatically,
or may require some extra steps. Here are some common examples:

Application
Server

DTS
Deployment

Exploding

Tomcat SCP/Samba
(automatic
copy)

Done automatically by the Application Server

Tomcat WAR (web
console /
manual copy)

Done automatically by the Application Server on WAR
deployment

Tomcat TomcatHTTP Done automatically by the Application Server

JBoss/Wildfly SCP/Samba
(automatic
copy)

Not done automatically - exploded flag must be set in the App
Server Parameters to instruct DTS to do it

JBoss/Wildfly WAR (web
console /
manual copy)

The WAR file must be unzipped into a directory with the same
name (including ".war") and the directory must be copied into
the deployments folder of the Application Server

 Starting w ith version 12, Wildfly provides Web Console
features to explode deployed WARs.

JBoss/Wildfly JBossCLI Done automatically by DTS

 This deployment method requires Wildfly 12 or higher

 See App Server Parameters for detai ls on al l the supported deployment methods.

5.5.2 External Security and Load Balancing

DTS Webservices do not provide an external Security Layer themselves and, while the distribution
of requests within DTS is load balanced between the various data producer instances, another
layer of load balancing may be desirable at the entry point of certain services. In these situations,
we recommend using DTS Webservices in conjunction with a dedicated reverse proxy and load
balancer, (e.g. Nginx, HAProxy, etc.).

97

97

202

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

In these section we will discuss when using such a layer may be desirable and what the
advantages of using such a solution would be.

Security

An entry-point security layer is desirable if you need to provide access to the DTS services from
outside your organization, or through the internet without network virtualization. It is also essential if
you wish to setup a credentials barrier for accessing the services.

The advantages of using a reverse proxy in this case are:

· The solution will use web-standard https with your desired encryption flavor and depth (SSL, TSL,
etc.)

· It will ensure encryption of all of the services' traffic, not just the message bodies (like document
based encryption methods would)

· It provides an easy way to define and configure credential barriers for various services with a lot
of flexibility regarding login security

· Can provide complementary features like redirecting unencrypted requests, DDoS attack
protection, etc.

Load Balancing

An entry-point load balancer is desirable if high levels of traffic are expected on certain services and
the initial request handling is likely to become a bottleneck. For such situations, multiple instances
of a DTS webservice can be deployed on multiple application servers, and an external load
balancer can be used to direct requests to the instances.

Advantages:

· Greatly increases the intake capacity of individual webservices

· Allows various criteria to be used for traffic routing

· Allows the persistence of sessions and streams

All-In-One

Many reverse proxy / load balancing solutions provide all of the features required for securing and
routing traffic from a single instance, are very efficient and conform to Web standards, thus
providing the ideal approach for such situations.

203

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

5.5.3 Logging

DTS Webservices can be created with special logging parameters in order to create customized
logs that can be processed by other tools for reporting, statistics, or other purposes.

 For the moment, customized logging is only compatible w ith Tomcat application servers.

Separate Logging

By default, DTS Webservices will log messages in the application server's main output log (e.g.
[tomcat]/logs/catalina.out).

To turn on customized Webservice logging, the GUI Controller must be started with the
DTS_WS_LOGGING_PATH environment variable set.

DTS_WS_LOGGING_PATH=/opt/tomcat/logs/dts

This directory path set here will be the target for the logs created by all DTS Webservices on the
machine or container running the application server where the services are deployed.

 Only Webservices generated while the Webapp is connected to a GUI Control ler w ith
DTS_WS_LOGGING_PATH set w il l be capable of customized logging.

 If the Application Server is running in a Docker container, i t is a good idea to map this path to the
host for easy access to the logs.

The webservices will create daily log files in this directory with the following names:

[service-name].YYYY-MM-DD.log

When separate/customized logging is enabled, the log messages created by DTS Webservices
will use the format:

[YYYY-MM-DD HH:MM:SS] [LEVEL]: [MESSAGE][STACK_TRACE]

· [LEVEL] represents the logging level of the message (INFO, WARNING, ERROR, DEBUG,
SEVERE, etc.)

· [MESSAGE] represents the actual message being logged (created either by the Application
Server or the Webservice)

· [STACK_TRACE] represents a JVM stack trace to help diagnose errors.

Customization Parameters

211

204

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

Certain parameters can be customized for Webservice logging. This is done by setting
environment variables either globally on the machine or container running the application server, or
within the startup scripts of the application server itself.

Like all DTS modules, the Webservices respond to the DTS_DEBUG_LOGGING environment
variable which, if set to true, will increase the verbosity of the output for debugging purposes.

DTS_DEBUG_LOGGING=true

 Debug logging can increase output volume substantial ly. If log fi les become too large, please
check if DTS_DEBUG_LOGGING is on and needed.

 Unlike other logging customization options, debug logging can be enabled for any Webservice,
regardless of how it was created.

DTS Webservices can also be configured to log all transactions they handle by setting the
DTS_TRANSACTION_LOGGING environment variable to true.

DTS_TRANSACTION_LOGGING=true

 Transaction logging w il l fork the input and output streams of request and response message in
order to perform its function, so it may have a perceivable performance impact in certain scenarios.

Transaction logging can be further customized by setting the DTS_TRANSACTION_FORMAT
environment variable to a specific tokenized string, thus instructing the logger to create messages
that include certain information.

The following tokens are currently available for the transaction format:

Toke
n

Name Description

%a REMOTE_HOST_TOKE
N

The address of the remote host that invoked the transaction

%u REMOTE_USER_TOKE
N

The username that invoked the transaction

%t TIMESTAMP_TOKEN The timestamp of the request receipt

%T RETURN_TIME_TOKEN The number of milliseconds it took for the service to resolve the
request

%m METHOD_TOKEN The type of http method that was invoked (GET, POST, etc.)

205

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

%r URI_TOKEN The operation URI

%q QUERY_TOKEN The query being perfomed (GET only)

%b REQ_BODY_TOKEN The body of the http request

%B RESP_BODY_TOKEN The body of the http response

%h REQ_HEADER_TOKEN A specific header in the http request [*]

%H RESP_HEADER_TOKE
N

A specific header in the http response [*]

%n NEW_LINE_TOKEN A system-specific new line character

 [*] Header tokens require the name of a header to be specified after the token between {{ and }}.
For example %h{{connection}} will extract the header value for the "connection" tag.
Header names are not case sensitive.

If transaction logging is enabled but no specific format is set, the webservices will use the following
default format:

TRANSACTION: %a %m %r %q %T%nREQ: %b%nRESP: %B

 The transaction format affects only the [MESSAGE] section of the resulting log message.

Example Messages (Default Format)

· GET Transaction:

[2021-03-12 16:46:04] INFO: TRANSACTION: 192.168.199.1 GET /test_ora_abcd_DEV_v2/app/ora1/SG_DATA1_EO_COMPOSITE_SWITCH/records ID=4553 34ms
REQ:
RESP: [{"device_TYPE":10,"phase_CONTEXT":999,"mounting":20,"number0":null,"owner_TYPE":10,"owner_NAME":10,"asset_ID":null,"date_INSTALLED":null,"source_ID":null,"source_DATA":null,"style_SUBCODE":10020,"design":null,"rwo_ID":4860,"alias_DESCRIPTION":"Composite Switch (4553)","location_DESCRIPTION":null,"remarks":null,"map_ID_INTERNALS":0,"status":20,"network_TYPE":20,"nominal_VOLTAGE_PP":290,"phasing":100,"id":4553}]

· POST Transaction:

[2021-03-12 16:43:40] INFO: TRANSACTION: 192.168.199.1 POST /test_ora_abcd_DEV_v2/app/ora1/SG_DATA1_EO_COMPOSITE_SWITCH/records-with-pred - 177ms
REQ: {"predicate": {"operatorName": "eq","attributeName": "ID","attributeValue": "4553"},"dts__size": 1}
RESP: [{"device_TYPE":10,"phase_CONTEXT":999,"mounting":20,"number0":null,"owner_TYPE":10,"owner_NAME":10,"asset_ID":null,"date_INSTALLED":null,"source_ID":null,"source_DATA":null,"style_SUBCODE":10020,"design":null,"rwo_ID":4860,"alias_DESCRIPTION":"Composite Switch (4553)","location_DESCRIPTION":null,"remarks":null,"map_ID_INTERNALS":0,"status":20,"network_TYPE":20,"nominal_VOLTAGE_PP":290,"phasing":100,"id":4553}]

· Severe Exception:

[2021-03-12 16:43:25] SEVERE: Servlet.service() for servlet [abcd] in context with path [/test_ora_abcd_DEV_v2] threw exception
org.apache.cxf.interceptor.Fault: DTS Endpoint ora1 not available to use!
 at org.apache.cxf.service.invoker.AbstractInvoker.createFault(AbstractInvoker.java:162)
 at org.apache.cxf.service.invoker.AbstractInvoker.invoke(AbstractInvoker.java:128)
 at org.apache.cxf.jaxrs.JAXRSInvoker.invoke(JAXRSInvoker.java:201)
 at org.apache.cxf.jaxrs.JAXRSInvoker.invoke(JAXRSInvoker.java:104) […]

206

DTS Product Manual © 2023 Realworld Systems B.V.

Webservices

5.6 Limitations

§ Remote routine calls with Geometry parameters (or complex parameters containing geometries)
can be mapped for Webservice access only if the respective parameters are of specific
geometry types (i.e. Point, LineString, Polygon, etc.). For example, Oracle has no mechanism to
specify the geometry type for a parameter (they will all be declared as SDO_GEOMETRY), so
DTS will not be able to map such a routine into a Webservice. The workaround for this limitation
is to modify such routines to receive geometry parameters in some other format (user types,
coordinate arrays, etc.). Routine outputs are not affected by this limitation - generically defined
geometries are fully supported in routine output structures.

Technical Guide

208

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6 Technical Guide

This section provides some technical details about the DTS software stack.

· Architecture

· Communication

· Types

· Geometry

· Predicate

6.1 Architecture

DTS functions as a distributed middleware layer based on multiple interacting modules.

208

218

218

222

239

209

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

Depending on their type and purpose, modules can be deployed in containers, stand-alone, or as
part of other applications.

The types of modules employed by DTS are:

210

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

Container Description In
Cluster?

Internal
Communication Bus
(Redis)

The Redis messaging system used by DTS Yes

Projects Repository
(MongoDB)

The Mongo database used internally by DTS Yes

GUI Front-End The in-browser part of the GUI webapp No

GUI Back-End The JS webapp which serves as the GUI Engine Yes

GUI Controller Houses the back end of the GUI Yes

DTS Controller The main middleware module Yes

Connectors
(Producers)

Generic data connector which is instantiated as specific
producers

Yes

Aggregators Independent module which serves aggregation requests for a
specific project

Yes

DTS Agent The proxy module that allows DTS to control the cluster it's
deployed in.

No

Native Clients Bespoke DTS clients, based on the Client libraries No

Web Service
Clients

REST/SOAP webservices automatically generated by DTS to
act as clients

No

 Please see the Communication section for information on the communication paradigms used by DTS

6.1.1 Controller

The DTS Controller is the central module of the system during general operation.

It is tasked with the following responsibilities:

· Registers and manages all Producer and Client sessions in the system.

· Routes requests and ensures load balancing.

· Manages data streams.

217

217

211

210

212

215

216

213

213

218

212 213

211

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

· Manages internal communications channels.

· Manages in-use projects.

· Orders boot-up and scaling of producer sessions.

· Monitors producer sessions for responsiveness.

· Manages event notifications.

· Serves as the security hub.

The Controller is the first module to be started and it's continued operation is critical to the entire
system. No registration or data requests can be resolved without the Controller.

In a standard deployment, the Controller is a single instance housed inside a container.

The Controller communicates with other modules as follows:

· Internal Communications Bus (Redis): All communication with Producers , Clients and the
Agent is done via this bus. Moreover, the Controller generates the specific communication
channels on the ICB.

· Mongo API over TCP/IP: The Controller reads all project data from the Projects Repository using
this method.

· SMTP: The Controller uses this protocol to send notifications regarding various events.

6.1.2 GUI Controller

The DTS GUI Controller serves as the metadata hub for the system and represents the central
module for GUI / project editing operations.

It is tasked with the following responsibilities:

· Receives and resolves metadata requests from the GUI .

· Creates instances of various Connectors within its own classpath as Local Metadata
Providers to facilitate metadata request resolution.

· Registers and manages remote Connectors as Remote Metadata Providers to facilitate metadata
request resolution.

· Generates web service clients bytecode and packages them for deployment at the GUI's request.

212 213

216

217

118

212

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

· Ensures security in communication with remote providers.

The GUI Controller is critical for all project manipulation actions as it the module that ultimately
resolves all requests for metadata and other GUI operations.

In a standard deployment, the GUI Controller is a single instance housed inside a container.

The GUI Controller communicates with other modules as follows:

· Internal Communications Bus (Redis): The GUI Controller uses the ICB to communicate with the
GUI , the Agent and any connected Remote Metadata Providers (Connectors).

· Mongo API over TCP/IP: The Controller reads all project data from the Projects Repository using
this method and fills in metadata and mappings as needed.

6.1.3 Producer

The DTS Producer serves as the data request resolution module of the system.

It is tasked with the following responsibilities:

· Morphs into a specific Connector by including the necessary libraries into its own classpath.

· Registers with the Controller and implements the specific connector configuration it receives
from it.

· Receives and resolves data and execution requests routed to it by the Controller using the
Connector libraries and provides responses directly to the requesting Clients .

· For certain Connectors (e.g. Smallworld), the Producer must also serve as a Remote Metadata
Provider, register with the GUI Controller , and resolve metadata requests.

· Implements communication security protocols.

DTS Producers can also be seen as instances of Connectors . While a Connector, as defined in
the Project, represents a logical connection to a data source, a producer is a physical process that
implements a connector definition.

In a standard deployment there can be multiple producer instances running inside separate
containers. Depending on the scaling configuration and the current load of the system, there can
also be multiple active producers for each logical Connector definition.

217 216 118

118

210

213

211

118

213

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

The Producer communicates with other modules as follows:

· Internal Communications Bus (Redis): The Producer uses the ICB to receive requests routed by
the Controller, to respond to Clients and to provide status reports to the Controller.

· Other APIs: The Producer also uses specific APIs for each Connector type to access the
respective datasource (e.g. Oracle - ojdbc).

6.1.4 Client

The DTS Client is a blanket term for the library modules that provide client access to the system
from various environments.

It is tasked with the following responsibilities:

· Encapsulates DTS client operations in simple functions relative to the environment.

· Registers with the Controller .

· Facilitates the opening of Projects.

· Encapsulates requests in environmentally relevant forms and addresses inside the system.

· Packages results received from the queried Producer in a standard format for the
environment.

· Offers simple calls for creating, managing and consuming data streams.

· Implements communication security protocols.

Since the Client is a library which would generally be called by other routines in the environment, it
has no specified deployment paradigm.

The only Client library currently available for development is for Java.

The Client communicates with other modules as follows:

· Internal Communications Bus (Redis): The ICB is used by the Client to address requests to the
Controller for routing and to receive responses from Producers .

DTS provides out-of-the-box Client environment implementations for:

· REST/SOAP

210

212

210 212

214

214

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

· Smallworld

6.1.4.1 Webservice Client

DTS Webservice Clients are implementations of the Java Client Library that are generated by
the system upon request for a given Project and set of resources.

A Webservice Client is tasked with the following responsibilities (in addition to the ones of the base
library):

· Provides access to the configured resources via SOAP or REST requests.

· Is packaged as an easily deployable Web ARchive (WAR).

· Is compatible with various Application Servers (e.g. Tomcat, JBoss, Wildfly, etc.)

· Encapsulates arguments and results of targeted routines to ensure they are callable using the
configured protocol, but also translate to the native datasource being accessed.

· Provides SOAP/REST operations for creating, managing and consuming data streams.

· Uses standard data formats (XML/JSON) for inputs and outputs.

· Uses standard representations for complex objects (e.g. GeoJson for geometries).

· Can be multiplied and clustered for load balancing.

A Webservice Client must be deployed inside an Application Server. The deployment of the
Application Server itself is irrelevant to the system as long as it has access to the Internal
Communications Bus.

Multiple identical Webservice Clients can be deployed simultaneously and requests can be routed
to them using 3rd party load balancing software, like Nginx.

The Webservice Client itself provides no external security features. To implement authentication,
authorization or encryption on the resulting Webservices, an extra layer is required. A tool like Nginx
is recommended for this as well.

 For more information on the operations and usage of DTS Webservices, please see the dedicated section .

215

213

186

215

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.1.4.2 Smallworld Client

The DTS Smallworld Client is an implementation of the Java Client Library specific for the GE
Smallworld environment.

It is tasked with the following responsibilities:

· Provides access to all resources in a given project from the Smallworld Magik console, or via
Magik code.

· Encapsulates arguments and results of targeted routines within native Magik objects.

· Provides Magik code methods to create, manage and consume data streams.

· Uses native Magik objects as inputs and produces native Magik objects as outputs.

· Translates complex objects to and from relevant Magik forms (e.g. pseudo_geometry for
geometry).

The Smallworld Client is part of the Smallworld Connector fileset and must be deployed for use
inside a Smallworld image (only swaf is required).

 For more information on how to use the Smallworld Client, please see the dedicated section .

6.1.5 Aggregator

The DTS Aggregator serves as the data request resolution module for aggregate data requests.

 For an overview of this feature, see Aggregation .

It is tasked with the following responsibilities:

· Registers with the Controller and implements the Aggregate definitions it receives from it.

· Also registers with the Controller as a Client to make requests for specific aggregate
elements.

· Receives and resolves aggregate data requests routed to it by the Controller using the client
connection to pass connector-specific requests onwards and provides responses directly to the
requesting Clients .

· Implements communication security protocols.

213

159

176

242

210

213

213

216

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

DTS Aggregators are directly linked to Projects (i.e. an Aggregator can only serve a single project's
Aggregates, but will serve all of them). The Aggregator behaves both as a Producer as it
receives requests and provides responses to the respective Clients, and as a Client as it generates
requests for specific connectors in order to build the Aggregate records.

In a standard deployment there can be multiple Aggregator instances running inside separate
containers. Depending on the scaling configuration and the current load of the system, there can
also be multiple active Aggregators for each running DTS Project.

The Aggregator communicates with other modules as follows:

· Internal Communications Bus (Redis): The Aggregator uses the ICB to receive requests routed
by the Controller, to respond to Clients, to make connector-specific data requests, and to provide
status reports to the Controller.

6.1.6 Agent

The DTS Agent serves as the interface between the system and the cluster that runs its main
module containers.

It is tasked with the following responsibilities:

· Can interact with Kubernetes as well as Docker-only deployments of DTS.

· Starts and stops containers/pods at the request of the Controller .

The system can function without an Agent running, but it will not be able to self-regulate - all
producers will need to be started and stopped manually or by other means, and automatic
restarting of unresponsive producers will not be possible.

In order to control the cluster, the Agent must run outside of it, generally as a stand-alone
application or wrapped in a service. It can function on the same machine as the cluster controller or
on a remote one with SSH access.

The Agent communicates with other modules as follows:

· Internal Communications Bus (Redis): The ICB is used by the Agent to receive commands from
the Controller and report on its status.

· SSH/SCP: SSH is used by the Agent to control the deployment cluster if not running on the same
machine.

212

210

212

210

217

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.1.7 GUI

The DTS GUI is the user interface of the system.

It is tasked with the following responsibilities:

· Provides the means for users to design Projects in a friendly graphical environment.

· Provides information about and control over certain internal operations.

· Allows users to publish Projects into use of the other systems.

· Allows users to create, alter and deploy Webservice Clients .

The GUI is a JavaScript Web Application with a Front-End running in the user's browser and the
Back-End using NodeJS and typically running in a single container in the main deployment cluster.

Multiple GUI deployments functioning simultaneously are supported, but scenarios where this is
necessary are limited.

The GUI communicates with other modules as follows:

· HTTP is used to communicate between the Front-End and the Back-End of the GUI.

· Internal Communications Bus (Redis): The ICB is used by the GUI Back-End to communicate
with the GUI Controller for resolution of requests.

6.1.8 CLI

Command reference coming soon.

In the meantime please use the help commands:

[Linux]

$./dts-cli.sh --help

[Windows]

> dts-cli.bat --help

214

218

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.2 Communication

DTS uses a number of communication paradigms to pass information between various modules as
well as to and from external actors:

· The Internal Communication Bus (ICB) is the main communication channel of the system.
Most of the first-party modules communicate using this bus, and it can also be used by third party
clients that adhere to the API. In actuality, it represents a standard Redis server.

· Mongo API over TCP/IP is used by all the modules which need to access the Projects
Repository to perform the necessary operations.

· HTTP is used by the GUI Front-End to communicate to the GUI Back-End.

· SMTP is used between the GUI Controller and the Customer Mail Server.

· SSH/SCP is used by the GUI Controller to directly deploy web services into certain Application
Servers and by the Agent to control the deployment cluster remotely.

· Other APIs are used by the various Connectors to access the specific datasources (e.g. ojdbc,
ACPT, etc.). These generally also function over TCP/IP.

Ports

DTS deployments can vary depending on network topology, resources and usage. However, certain
functions will always require remote access on configured ports.

The required ports are:

· The GUI Webapp port (configurable) must be opened to allow remote users to interact with the
web GUI.

· The ICB (Redis) port (configurable) must be opened to allow remote clients to access the
system.

· The SSH port (22) must be opened to allow installation and maintenance operations.

 For more information on deployment models and specific ports, please see Deployment .

6.3 Types

DTS accesses various data sources with various type architectures and needs to provide a middle
layer to facilitate translation of data between all the native types.

16

219

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

This section lists all of the data types defined in the DTS middleware (we'll simply call them DTS
Types) and how they relate to generic Java client types, as well webservice client XSD types and
OpenAPI types.

DTS Type Java Type XSD Type OpenAPI Type

STRING java.lang.String xs:string string

INT8 java.lang.Byte xs:byte integer

INT16 java.lang.Short xs:short integer

INT32 java.lang.Integer xs:int integer

INT64 java.lang.Long xs:long integer

UNSIGNED_INT8 java.lang.Short xs:short integer

UNSIGNED_INT16 java.lang.Integer xs:int integer

UNSIGNED_INT32 java.lang.Long xs:long integer

UNSIGNED_INT64 java.math.BigInteger xs:short integer

BIG_INTEGER java.math.BigInteger xs:integer integer

FLOAT java.lang.Float xs:float number

DOUBLE java.lang.Double xs:double number

DECIMAL java.math.BigDecimal xs:decimal number

BOOLEAN java.lang.Boolean xs:boolean boolean

DATE java.time.LocalDate xs:date string

DATE_TIME java.time.Instant xs:dateTime string

TIME java.time.Instant xs:time string

DTS_GEOMETRY com.alloy.dts.type.json.
geojson.GeoJson

[custom]* [custom]**

DTS_POINT_GEOMETRY com.alloy.dts.type.json.
geojson.GeoJsonPoint

[custom]* [custom]**

DTS_LINE_GEOMETRY com.alloy.dts.type.json.
geojson.GeoJsonLineStrin
g

[custom]* [custom]**

DTS_AREA_GEOMETRY com.alloy.dts.type.json.
geojson.GeoJsonPolygon

[custom]* [custom]**

DTS_ANNOTATION_GEO
METRY

com.alloy.dts.type.json.
geojson.GeoJsonPoint

[custom]* [custom]**

DTS_MULTIPOINT_GEO
METRY

com.alloy.dts.type.json.
geojson.GeoJsonMultiPoint

[custom]* [custom]**

DTS_MULTILINE_GEOME
TRY

com.alloy.dts.type.json.
geojson.GeoJsonMultiLine
String

[custom]* [custom]**

DTS_MULTIAREA_GEOM
ETRY

com.alloy.dts.type.json. [custom]* [custom]**

220

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

geojson.GeoJsonMultiPoly
gon

DTS_GEOGRAPHY com.alloy.dts.type.json.
geojson.GeoJson

[custom]* [custom]**

DTS_PREDICATE com.alloy.dts.model.
DTSPredicate

[custom]*** [custom]***

 (*) Geometry Types have custom defined XSD Types, which are ful ly described in the DTS
Service's WxDL fi le .
If the particular DTS service is a SOAP service, objects in these fields will only have the geoJsonString field populated
with a JSON representation of the respective Java Type (see Geometry Structure).

 (**) Geometry Types have custom defined OpenApi Types which are ful ly described in the DTS
Service's OpenApi fi le .
This description will actually describe the respective Java Type in JSON format (see Geometry Structure).

 (***) Predicates are represented in in XSD and OpenAPI as custom types, describing the structure
of the Java Object in XML or JSON format.
Read more about Predicate structure here .

 Read more about XSD Types here.

 Some OpenAPI Types w il l have format restrictions to reflect the original DTS Type. More info
here.

 To see how the DTS Types relate to a specific data source's native types, please see the Types
section of the respective Connector

6.4 Streams

DTS Streams are constructs that allow the transfer of data objects or records from available
resources iteratively or in batches. They differ from record sets in that a stream does not contain
any data records. Instead it is a token that permits requesting record sets and automatically
advances as they are delivered. They are very much equivalent to Database Result Sets or File
Output Streams in scope and operation. Indeed, a DTS Stream may actually use one or more
Result Set(s) or Output Stream(s) to source the data objects it provides. Its purpose is to wrap
such data source constructs in a form that is friendly to remote interaction.

Streamable Resources

195

223

195

223

239

118

https://xmlbeans.apache.org/docs/3.0.0/guide/conXMLBeansSupportBuiltInSchemaTypes.html
https://swagger.io/docs/specification/data-models/data-types/

221

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

DTS provides streaming access to the following types of resources:

Collections / Tables /
Views

Data from any storage construct accessible through DTS connectors
can be streamed.

Stream Result Routines Certain routines are considered to provide results in the form of
Streams

e.g.: Table-Valued Functions, methods returning DTS record streams,
etc.

Aggregates DTS Aggregates can be streamed from as if they were a simple
collection.

Topics Upon subscription to a Topic, a DTS is created. Polling the topic can
only be done using this stream.

Stream Lifecycle and Operations

DTS Streams have a simple lifecycle, defined by the available operations:

Create Open Open a stream to a storage or aggregate resource. Can optionally use
a DTSPredicate to perform a specific query. If no predicate is provided,
the entire resource will be streamed (subject to any static filters put in
place).

ExecuteStream
Call

Execute a Routine whose result is a stream.

Subscribe Subscribe to a Topic to consume it via a stream.

 Regardless of how a Stream is created, the result is an Active Stream, represented by
a Stream ID (in UUID format).

Active GetRecords Requests a batch of records on the stream. Must provide a size for the
batch. If enough records remain, then that number of records is
returned, otherwise as many as are left.

HasMore Queries whether there are more records on the stream.

Poll Similar to GetRecords but wrapped for Topic use -> it does not take a
specific size.

 While a Stream is active, i t takes up a slot in the Active Streams of the DTS Product
Licence.

Close Close Closes the stream, and frees associated resources.

222

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

 Active Streams that have had no operation performed on them for 2 minutes w il l time
out and close automatically.

Implementations

DTS Streams always adhere to the above specification, but the way they are effectively accessed
depends on the Client API or Implementation.

Currently, the following are available:

· Webservice Client

· Smallworld/Magik Client

· Java Client API

· .NET Client API

· Raw/JSON API

6.5 Geometry

DTS uses a custom extension of the GeoJson standard format for encoding geometries internally
(hereafter referred to as DTSGeoJson). This is also the format in which DTS encodes output and
expects input geometry data for Redis and Web Service clients.

DTS endeavors to translate the various geometry formats provided by the supported datasources
to and from DTSGeoJson with as much fidelity as possible. However, DTSGeoJson is also fully
backwards compatible with the standard GeoJson format and ensures that clients which are not
"aware" of the DTSGeoJson extension are still able to seamlessly communicate geometry data via
DTS using reasonably accurate approximations.

This section details the additions DTSGeoJson makes to the standard GeoJson and how
approximations work.

For details on the standard GeoJson format, please see The GeoJson Specification.

§ Structure

§ Corrections

§ Examples

187

176

257

266

274

223

224

226

https://tools.ietf.org/html/rfc7946

223

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.1 Structure

Here is the general structure of a DTSGeoJson with all the fields it uses:

{
"type": "",
"coordinates": [],
"orientation": [],
"cs": "",
"dimensions": 2,
"corrections": [],
"extras": {},
"geoJsonString": ""

}

 Geometry data only
Please note that the structure above represents the content of the "geometry" field in a full GeoJson "Feature"

object. DTS only uses this part, as the other feature elements are not relevant to the geometry and cannot be related to
pure geometry structures in the various systems DTS connects.

type Unchanged from the standard specification. DTS supports all GeoJson geometry
types: Point, Multipoint, LineString, MultiLineString, Polygon, MultiPolygon and
GeometryCollection. This field must be populated.

coordinates Represents the coordinates of the geometry in the same format as the standard
specification. If the geometry contains elements that are not supported by the
standard specification (e.g. arcs, splines, etc.), the coordinates will contain a
"flattened" approximation (a series of straight line segments), while the exact
definition of the sector will be stored in corrections. This ensures that clients
which only support the standard format can get a close approximation of these
geometries from the expected field, while clients that support the DTSGeoJson
extras can substitute the approximated sectors with the exact version. This field
must be populated.

orientation(s) Is only present for Point (orientation) and MultiPoint (orientations) and encodes
the directions points are facing (e.g. building placements). It is encoded as a
single coordinate for Points and as multiple coordinates for MultiPoints. The
coordinate encoding is the same as in the coordinates field. Non-oriented points
will have orientations with all ordinates = 0.0, or simply lack the field.

cs Specifies the SRID of the coordinate system the geometry is defined in. This field
is not required.

224

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

dimensions Specifies the dimensionality of the geometry. Supported values are 2 and 3, but
3D geometries with certain sector types are not supported for approximation (see
Known Limitations). If left unpopulated, the value will be inferred from the
coordinates.

corrections Stores the exact representation of curve sectors that are not supported by the
GeoJson standard specification. If not populated or empty, the coordinates are
considered to be the exact representation of the geometry. The format of the
corrections is detailed in a separate section .

extras Stores extra information the geometry structure may contain which is only
relevant to certain data sources (e.g. annotation text, justification, etc.). It
presents as a key-value map (string-string) and the values are as
provided/required by the datasource.

geoJsonString A String representation of the entire DTSGeoJson object (in JSON format). This
field is present as a workaround for including DTSGeoJson geometry
representations in SOAP XML messages and only has relevance in that context.
In any other circumstances it will be absent and/or ignored.

6.5.2 Corrections

DTSGeoJson corrections are encoded as an array of Line Solutions, each of which describes a
sector's exact representation and its place within the geometry structure's coordinates . A Line
Solution must represent a continuous curve.

This is the structure of a Line Solution:

{
"startIndex": 0,
"length": 0,
"exactRepresentation": [],
"lineType": ""

}

startIndex Represents the total index of the geometry structure's coordinates where
the corrected sector starts. The total index represents the index across sub-
arrays down to coordinate level.

length Represents the length of the approximation in the geometry structure's
coordinates that this correction replaces.

322

224

223

225

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

exactRepresentation an array of double[], each of which represents a coordinate. Each double[]
must contain the same number of double values (ordinates), which can only
be 2 or 3, however certain 3D corrections are not supported at this time
(see Known Limitations). These coordinates will be interpreted and
translated to datasource-specific geometry encodings according to the
lineType.

lineType Represents the type of curve this representation encodes. Possible values
are:

Value Interpretation

LINE_STRING The coordinates represent a series of straight line segments, as they would in
the geometry structure's coordinates. This correction type is redundant, but
exists for specialized clients which can pass exact geometry representations
using only the corrections field.

CP_ARCS The coordinates represent a series of Center Point Circle Arcs. Each arc is
encoded by 3 coordinates [start, middle, end]. The middle coordinate can be
any point on the arc. In geometries created by DTS, the middle coordinate is
always the exact middle of the arc.

The end coordinate of an arc also serves as the start coordinate of the next arc,
so the total number of coordinates will be 2*N_ARCS+1.

 Please note that el l iptical / tangent arcs cannot be encoded w ith this l ineType
and need to be defined as NURBS.

NURBS The coordinates represent a Non-Uniform Rational B-Spline as follows:

[[D, N, K], [knot1, ..., knotK], [contolPoint1], ..., [controlPointN]]

Where:

D: the degree of the NURBS

N: the number of control points

K: the number of knots

knot1, ..., knotK: the knots (K double values)

[controlPoint1], ..., [controlPointN]: the weighted control points (N arrays of
double values containing the coordinate for the respective control point and the
weight [x, y, z, w])

 A correctly defined NURBS w il l agree w ith K = D + N + 1

RECTANGLE The coordinates represent the opposite corners of a rectangle. Serves as
shorthand for the equivalent polygon which would use 5 coordinates instead of 2.

322

226

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

CIRCLE The coordinates represent a circle using 2 coordinates:

[[centerCoord], [anyOtherPointOnCircle]]

 When feeding geometry data to a system via DTS using DTSGeoJson, i t is possible to set exact
representations in the corrections field and not calculate any approx imations for the coordinates
field. For this to work, the targeted connector must be capable of using the DTSGeoJson extensions
and the coordinates field must contain some minimal placeholder values that w il l be replaced by the
exact corrections upon processing.

6.5.3 Examples

In this section we will explore some examples of geometries and how they would be encoded as
DTSGeoJsons.

§ Simple Point

§ Oriented Point

§ Multi Point

§ Annotation

§ Simple Line String

§ Arc Line String

§ Compound Line
String

§ NURBS

§ Multi Line String

§ Polygon

§ Compound
Polygon

§ Rectangle

§ Circle

§ Multi Polygon

§ Geometry
Collection

227

227

228

228

229

229

230

231

232

233

234

235

236

237

238

227

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.1 Simple Point

{
 "coordinates":[100.0,-100.0],
 "orientation":[0.0,0.0],
 "type":"Point",
 "cs":"89000",
 "dimensions":2,
 "extras":{}
}

6.5.3.2 Oriented Point

{
 "coordinates":[100.0,100.0],
 "orientation":[1.0,2.0],
 "type":"Point",
 "cs":"89000",
 "dimensions":2,
 "extras":{}
}

228

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.3 Multi Point

{
 "coordinates":[
 [100.0,100.0],
 [-50.0,50.0],
 [-100.0,-100.0]
],
 "orientations":[
 [1.0,2.0],
 [0.0,0.0],
 [3.0,1.0]
],
 "type":"MultiPoint",
 "cs":"89000",
 "dimensions":2,
 "extras":{}
}

6.5.3.4 Annotation

{
 "coordinates":[-100.0,-100.0],
 "orientation":[3.0,1.0],
 "type":"Point",
 "cs":"89000",
 "dimensions":2,
 "extras":{
 "text": "Some text",
 "justification": "22"
 }
}

229

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.5 Simple Line String

{
 "coordinates":[
 [-100.0,-100.0],
 [-50.0,50.0],
 [150.0,100.0]
],
 "type":"LineString",
 "cs":"89000",
 "dimensions":2,
 "extras":{}
}

6.5.3.6 Arc Line String

{
 "coordinates":[
 [-100.0,-100.0],
 [-99.879436,-95.093266],
 // ... intermediate steps
 [-74.094415,-32.844757],
 [-70.71,-29.29],
 [-67.155242,-25.9055844],
 // ... intermediate steps
 [-4.906733,-0.120563],
 [0.0,0.0],
 [4.906733,0.120563],
 // ... intermediate steps
 [67.155242,25.905584],
 [70.71,29.29],
 [74.094415,32.844757],
 // ... intermediate steps
 [99.879436,95.093266],
 [100.0,100.0]
],
 "type":"LineString",
 "cs":"89000",

230

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

 "dimensions":2,
 "corrections": [
 {
 "startIndex": 0,
 "length": 65,
 "exactRepresentation": [
 [-100.0, -100.0],
 [-70.71, -29.29],
 [0.0, 0.0],
 [70.71, 29.29],
 [100.0, 100.0]
],
 "lineType": "CP_ARCS"
 }
],
 "extras":{}
}

6.5.3.7 Compound Line String

{
 "coordinates":[
 [-150.0, -100.0],
 [-100.0,-100.0], // index=1
 [-99.879436,-95.093266],
 // ... intermediate steps
 [-74.094415,-32.844757],
 [-70.71,-29.29],
 [-67.155242,-25.9055844],
 // ... intermediate steps
 [-4.906733,-0.120563],
 [0.0,0.0], // index= 33
 [100.0,100.0]
],
 "type":"LineString",
 "cs":"89000",
 "dimensions":2,
 "corrections": [
 {
 "startIndex": 1,
 "length": 33,
 "exactRepresentation": [
 [-100.0, -100.0],
 [-70.71, -29.29],
 [0.0, 0.0]
],

231

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

 "lineType": "CP_ARCS"
 }
],
 "extras":{}
}

6.5.3.8 NURBS

{
 "coordinates":[
 [-150.0,-50.0],
 [-143.334820,-37.425259],
 [-136.967818,-26.881417],
 // ... intermediate steps
 [136.967818,-26.881417],
 [143.334820,-37.425259],
 [150.0,-50.0]
],
 "type":"LineString",
 "cs":"89000",
 "dimensions":2,
 "corrections":[
 {
 "startIndex":0,
 "length":89,
 "lineType":"NURBS",
 "exactRepresentation":[
 [3.0,7.0,11.0], // D, N, K
 [// knots:
 0.0,0.0,0.0,0.0,
 0.25,0.5,0.75,
 1.0,1.0,1.0,1.0
],
 // control points:
 [-150.0,-50.0,1.0],
 [-100.0,50.0,1.0],
 [-50.0,-100.0,1.0],
 [0.0,100.0,1.0],
 [50.0,-100.0,1.0],
 [100.0,50.0,1.0],
 [150.0,-50.0,1.0]
]
 }
],
 "extras":{}
}

232

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.9 Multi Line String

{
 "coordinates":[
 [// diagonal line
 [0.0,-100.0],
 [100.0, 0.0]
],
 [// arc
 [-100.0,-100.0],
 [-99.879436,-95.093266],
 // ... intermediate steps
 [-74.094415,-32.844757],
 [-70.71,-29.29],
 [-67.155242,-25.9055844],
 // ... intermediate steps
 [-4.906733,-0.120563],
 [0.0,0.0]
],
 [// horizontal line
 [0.0, 100.0],
 [50.0, 100.0]
]
],
 "type":"MultiLineString",
 "cs":"89000",
 "dimensions":2,
 "corrections": [
 {
 "startIndex": 2,
 "length": 33,
 "exactRepresentation": [
 [-100.0, -100.0],
 [-70.71, -29.29],
 [0.0, 0.0]
],
 "lineType": "CP_ARCS"
 }
],
 "extras":{}
}

233

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.10 Polygon

{
 "coordinates":[
 [// outer boundary:
 [-100.0, -100.0],
 [0.0, -100.0],
 [100.0, 0.0],
 [50.0, 100.0],
 [0.0, 100.0],
 [-100.0, -100.0]
],
 [// hole:
 [0.0, 0.0],
 [50.0, 0.0],
 [50.0, 50.0],
 [0.0, 50.0],
 [0.0, 0.0]
]
],
 "type":"Polygon",
 "cs":"89000",
 "dimensions":2,
 "corrections": [],
 "extras":{}
}

234

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.11 Compound Polygon

{
 "coordinates":[
 [
 [-100.0, -100.0],
 [0.0, -100.0],
 [100.0, 0.0],
 [50.0, 100.0],
 [0.0, 100.0],
 [0.0, 0.0],
 [-4.906733,-0.120563],
 // ... intermediate steps
 [-67.155242,-25.9055844],
 [-70.71,-29.29],
 [-74.094415,-32.844757],
 // ... intermediate steps
 [-99.879436,-95.093266],
 [-100.0, -100.0]
]
],
 "type":"Polygon",
 "cs":"89000",
 "dimensions":2,
 "corrections": [
 {
 "startIndex": 5,
 "length": 33,
 "exactRepresentation": [
 [0.0, 0.0],
 [-70.71, -29.29],
 [-100.0, -100.0]
],
 "lineType": "CP_ARCS"
 }
],
 "extras":{}
}

235

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.12 Rectangle

{
 "coordinates":[
 [
 [-100.0, -100.0],
 [100.0, -100.0],
 [100.0, 100.0],
 [-100.0, 100.0],
 [-100.0, -100.0]
]
],
 "type":"Polygon",
 "cs":"89000",
 "dimensions":2,
 "corrections": [
 {
 "startIndex": 0,
 "length": 5,
 "exactRepresentation": [
 [-100.0, -100.0],
 [100.0, 100.0]
],
 "lineType": "RECTANGLE"
 }
],
 "extras":{}
}

236

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.13 Circle

{
 "coordinates":[
 [
 [100.0,0.0],
 [99.518472,9.801714],
 // ... intermediate steps
 [9.801714,99.518472],
 [0.0,100.0],
 [-9.801714,99.518472],
 // ... intermediate steps
 [-99.518472,9.801714],
 [-100.0,0.0],
 [-99.518472,-9.801714],
 // ... intermediate steps
 [-9.801714,-99.518472],
 [0.0,-100.0],
 [9.801714,-99.518472],
 // ... intermediate steps
 [99.518472,-9.801714],
 [100.0,0.0]
]
],
 "type":"Polygon",
 "cs":"89000",
 "dimensions":2,
 "corrections": [
 {
 "startIndex": 0,
 "length": 65,
 "exactRepresentation": [
 [0.0, 0.0],
 [100.0, 0.0]
],
 "lineType": "CIRCLE"
 }
],
 "extras":{}
}

237

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

6.5.3.14 Multi Polygon

{
 "coordinates":[
 [poly1:
 [// outer boundary:
 [-100.0, -100.0],
 [0.0, -100.0],
 [100.0, 0.0],
 [50.0, 100.0],
 [0.0, 100.0],
 [-100.0, -100.0]
],
 [// hole:
 [0.0, 0.0],
 [50.0, 0.0],
 [50.0, 50.0],
 [0.0, 50.0],
 [0.0, 0.0]
]
],
 [// poly2 (circle):
 [
 [-50.0,100.0],
 // ... intermediate steps
 [-100.0,150.0],
 // ... intermediate steps
 [-150.0,100.0],
 // ... intermediate steps
 [-100.0,50.0],
 // ... intermediate steps
 [-50.0,100.0]
],
]
],
 "type":"MultiPolygon",
 "cs":"89000",
 "dimensions":2,
 "corrections": [
 {
 "startIndex": 11,
 "length": 65,
 "exactRepresentation": [
 [-100.0, 100.0],
 [-50.0, 100.0]
],
 "lineType": "CIRCLE"
 }

238

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

],
 "extras":{}
}

6.5.3.15 Geometry Collection

{
 "type":"GeometryCollection",
 "geometries": [
 { // point
 "coordinates":[-100.0,50.0],
 "orientation":[0.0,0.0],
 "type":"Point",
 "cs":"89000",
 "dimensions":2,
 "extras":{}
 },
 { // polygon
 "coordinates":[
 [
 [-100.0, -100.0],
 [0.0, -100.0],
 [100.0, 0.0],
 [50.0, 100.0],
 [0.0, 100.0],
 [-100.0, -100.0]
],
],
 "type":"Polygon",
 "cs":"89000",
 "dimensions":2,
 "corrections": [],
 "extras":{}
 },
 { // line
 "coordinates":[
 [0.0,-150.0],
 [100.0,-150.0],
 [100.0,-100.0],
 [150.0, 0.0]
],
 "type":"LineString",
 "cs":"89000",
 "dimensions":2,
 "extras":{}
 }

239

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

]
}

6.6 Predicate

Predicates are data structures that allow complex queries to be passed through DTS towards
various Connectors in order to extract records or create streams. All record requests through
DTS will internally resolve to Predicates, though the direct interface may sometimes wrap the
request in simpler parameters for ease of use.

Predicates are also used by DTS to define fundamental Collection Filters and to design
relationships within Aggregates .h

Structure

DTS Predicates can be found in various endpoints either as Java Objects or JSON or XML data
structures. We will explore their structure in JSON format for simplicity:

{
"operatorName": "",
"attributeName": "",
"attributeValue": "",
"negated": false,
"leftPredicate": {

// another predicate
},
"rightPredicate": {

// another predicate
}

}

operatorName The name of the operator to be used either between attributeName and
attributeValue, or between leftPredicate and rightPredicate, depending on the
operator.

attributeName The name of the attribute that the Predicate will create a clause for

attributeValue The comparative value for attributeName

negated Whether the Predicate should be negated

leftPredicate Used in compound Predicates. Specifies the first predicate that should be
combined using operatorName.

118

242

240

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

rightPredicate Used in compound Predicates. Specifies the second predicate that should be
combined using operatorName.

 The types of al l of the Predicate's fields is String, w ith the exception of "negated", which is a
boolean
To pass a number-type attributeValue, into the predicate, simply use the standard String representation (e.g.: 34 ->
"34", 100.29 -> "100.29", etc.)

 Certain expressions can also be passed through the attributeName and attributeValue fields, in
order to provide another layer of query customization
The exact limits of this feature depend on the targeted system. You can find a general description of it below and
individual implementation limits in the "Limitations" section of each Connector category.

Operators

The operators, specified using the operatorName field of the Predicate, control the actual function of
the Predicate. The following operators are known to DTS:

operatorNa
me

Function Details

eq Equals Creates a clause which checks if attributeName
equals attributeValue

like Matches Creates a clause which checks if attributeName
matches attributeValue (may be a regex or some
other kind of matching pattern, depending on the
targeted system)

gt Greater Than Creates a clause which checks if attributeName is
greater than attributeValue

gteq Greater Or Equal Than Creates a clause which checks if attributeName is
greater than or equals attributeValue

lt Lesser Than Creates a clause which checks if attributeName is
lesser than attributeValue

lteq Lesser or Equal Than Creates a clause which checks if attributeName is
lesser than or equals attributeValue

and And Combines leftPredicate and rightPredicate using an
AND operator

or Or Combines leftPredicate and rightPredicate using an
OR operator

118

241

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

 The negated field value determines whether the entire result of the Predicate should be negated,
thus making the creation of complementary operators possible:
eq + negated = not-Equals
like + negated = not-Matches
and + negated = NAND
or + negated = NOR

Passing Expressions

Examples

{
 "operatorName": "eq",
 "attributeName": "SURNAME",
 "attributeValue": "Smith",
 "negated": false
}

This Predicate will create a clause that will be
true for all records in the target collection where
the value of the SURNAME field is exactly equal
to "Smith"

{
 "operatorName": "like",
 "attributeName": "SURNAME",
 "attributeValue": "%son",
 "negated": false
}

This Predicate will create a clause that will be
true for all records in the target collection where
the value of the SURNAME field ends with
"son" (e.g. "Johnson", "Robertson", etc.)

 The w ildcard character % is common in SQL-
type queries

{
 "operatorName": "lteq",
 "attributeName": "AGE",
 "attributeValue": "34",
 "negated": false
}

This Predicate will create a clause that will be
true for all records in the target collection where
the value of the AGE field is less than or equal to
34

{
 "operatorName": "eq",
 "attributeName": "CITY",
 "attributeValue": "New York",
 "negated": true
}

This Predicate will create a clause that will be
true for all records in the target collection where
the value of the CITY field is not equal to "New
York"

{
 "operatorName": "and",
 "negated": false,
 "leftPredicate": {
 "operatorName": "eq",

This Predicate will create a clause that will be
true for all records in the target collection where
the value of the SURNAME field is exactly equal

242

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

 "attributeName": "SURNAME",
 "attributeValue": "Smith",
 "negated": false
 },
 "rightPredicate": {
 "operatorName": "lteq",
 "attributeName": "AGE",
 "attributeValue": "34",
 "negated": false
 }
}

to "Smith" and the value of the AGE field is less
than or equal to 34

{
 "operatorName": "and",
 "negated": false,
 "leftPredicate": {
 "operatorName": "eq",
 "attributeName": "CITY",
 "attributeValue": "New York",
 "negated": true
 },
 "rightPredicate": {
 "operatorName": "like",
 "attributeName": "TO_CHAR(DOB)",
 "attributeValue": "%-12-%",
 "negated": false
 }
}

This Predicate will create a clause that will be
true for all records in the target collection where
the value of the CITY field is not equal to "New
York" and the value of the DOB field after
transforming it to a String, contains " -12-" within
it (i.e. people that aren't from New York, but were
born in December).

 This is a simple use of expressions in the
attributeName field, where the Oracle function
TO_CHAR was used to create a match clause on a
DATE-type column

6.7 Aggregation

Aggregation is the feature that allows DTS to seamlessly unify resources from disparate data
sources based on predefined relationships and present them for consumption via Streams .

The configuration unit (project artifact) for Aggregation is called an Aggregate (stored in the
AGGREGATE collection). Multiple Aggregates can be defined for any DTS project using the
Aggregates Page in the Web UI.

The DTS component responsible for resolving aggregate data requests is called an Aggregator .

Aggregate Elements

220

306

59

215

243

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

Each well-defined Aggregate must contain the following elements:

Main Source The starting point for the Aggregate. The main stream will be created on this
data source and its results will be the root for requesting data from the
secondary sources.

Secondary
Sources

The other data sources for the Aggregate. Queries performed on these
sources depend on results from their parent sources (as defined through the
Relationships).

Relationships Simple clauses that define equality relationships between parent and child
sources. Each is modeled by feeding the value of an attribute from a parent's
result as the value of another attribute in a child's query.

Filters Each source (main or secondary) can have a fundamental filter.

· On Main Sources, the filter will restrict what base records will pass through to
those matching the filter.

· On Secondary Collection Sources, the filter will inject static/constant
parameters in the queries used to find data pertaining to an aggregate record,
with the Relationships providing the variable parameters.

· On Secondary Routine Sources, the filter is used to set constant values for
routine inputs.

Each source has a list of Attributes (items which can be included in the Aggregate result) and
Query Parameters (items which can be used to create relationship queries targeting the
respective source).

 Sources can be Collections or Routines.
Collection have their fields serve as both Attributes and Query Parameters.
Routines have their inputs (arguments) serve as Query Parameters and their outputs (results) serve as Attributes.

 Each source (main or secondary) can also have a fundamental fi l ter defined, which w il l restrict
results from that source to the ones that match the fi l ter.

 The l ist of Attributes from each source that w il l be included in the aggregation process is ful ly
customizable, as are the names w ith which the respective attributes w il l be tagged in the resulting
records.

 It fal ls to the user to ensure that no two Attributes across an Aggregate have the same name. The
name customization feature mentioned above must be used when duplicate Attribute names are
present.

Rules and Limitations

The following set of rules governs how aggregates function and it is not expected to change:

244

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

· Only Sources that have been included in the project are available for use in Aggregates. For
Collection Sources, only the fields that are included in the project will be available for use in
Aggregates.

· Each Secondary Source must have at least one relationship. Secondary Sources without
relationships are ignored.

· Only the Attributes from a parent source that have been included in the Aggregate are available
for relationships with child sources.

· All Query Parameters from a child source can be used in its relationships, regardless of their
inclusion status in the aggregate.

· Circular references cannot be created using Aggregate Relationships.

The following set of limitations exists for the current version, but is subject to possible changes in
future releases:

· The Main Source of an Aggregate must be a Collection.

· Secondary Sources cannot be Routines that return Streams.

· Only the Main Source's Query Parameters can be used to make queries on the Aggregate.

· All relationships are treated like "Outer Joins". If no results are found in a particular source for a
particular query, the resulting aggregate record will still be delivered, but with the values for that
source's attributes missing.

· If more than one result is generated by a particular relationship query, only the first record is used.

Example

Let's now look at an example Aggregate definition and see how it functions and what it outputs.

We'll assume we have a project with the following Sources included:

· A connector named ORACLE, with a CUSTOMERS table and a F_WEATHER_ZONE function;

· A connector named WEATHER_SERVICE with a AVERAGE_WEATHER function;

· A connector named MSSQL with two tables called METER_READS and METER_SPECS;

We'll also assume that all of the fields used in the Aggregate exist and have been included in the
project.

Here is our Aggregate:

245

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

Let's do an inventory of the elements:

Role Element Type Details

Main
Source

ORACLE ->
CUSTOMERS

Collection Our main source. A table of customers for our
service. It contains data about the customers,
including their addresses and the ids for their
meters.

Secondary
Sources

ORACLE ->
F_WEATHER_ZONE

Routine A stored function that creates a webservice-
friendly weather zone query based on an
address.

WEATHER_SERVICE
-> AVERAGE_TEMP

Routine A webservice operation that returns the average
temperature in a zone, over a number of days.

We have a filter on it which serves to set a
static value for the number of days parameter.

MSSQL ->
METER_READS

Collection A table containing readings from meters.

 We have not included the ID field since it will
duplicate the METER_CUST_ID value. It also has a
name coincidence with the field in the main source. If we
would want to include it, we would have to set a custom
name for the attribute.

MSSQL ->
METER_SPECS

Collection A table containing specifications for meters.

246

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

 We have not included the ID field since it will
duplicate the METER_SPEC_ID value. It also has a
name coincidence with the field in the main source. If we
would want to include it, we would have to set a custom
name for the attribute.

Relationshi
ps

ADDRESS ->
WEATHER_ZONE

Routine
Input

A relationship that feeds a customer's address
into the function that determines the respective
weather zone.

WEATHER_ZONE ->
ZONE_QUERY

Routine
Input

A relationship that feeds a weather zone into the
web operation for the average temperature.

CUST_ID -> ID Foreign
Key

A relationship modeling a Foreign Key for meter
ids.

METER_SPEC_ID ->
ID

Foreign
Key

A relationship modeling a Foreign Key for meter
specification ids.

Queries and responses on the aggregate will work the same as with any DTS collection, for
example, for a particular CUSTOMER.ID (=123456), we would get a record of the form:

{
"ID": 123456,
"NAME": "Smith, John",
"ADDRESS": "1 Street Lane, Townsville, Countryland",
"METER_CUST_ID": 654321,
"WEATHER_ZONE": "townsville,co",
"AVG_TEMP": 301.4,
"METER_SN": 112233445566,
"METER_SPEC_ID": "acme-4",
"IDX_VAL": 9000.04,
"TOLERANCE": 0.03

}

The record will contain only the attributes we have included in the aggregate, all brought together in
a single record and extracted based on our relationships, filters and query.

6.8 Security

The DTS architecture allows various components of the system to function remotely. This implies
that the possibility of transferring sensitive data over improperly channels cannot be ignored.

247

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

Moreover, the remote operations capability opens the door for malicious actors to interfere with the
various DTS subsystems in destructive ways.

To address these concerns, DTS implements its own security stack which ensures authentication
of all components in the system and end-to-end encryption of all inter-module communication.

DTS uses three industry-standard technology stacks in its security implementation.

a) Authentication and authorization of components is achieved using X509 certificates. This allows
the use of certificate chaining as a means of authentication, is inherently secure by virtue of the
underlying encryption technology and provides easy control over validity periods and other types
of authorization control.

· The certificates used by DTS implement SHA256 hashing and RSA keys (configurable
between 1024 and 4096 bits)

b) General communication encryption is handled by an AES Galois Counter Mode (GCM) 256 bit
mechanism. This one of the most secure variants of AES when implemented correctly while
also preserving fast encryption performance for larger data volumes.

· DTS uses new random initialization vectors for each message for maximum security

c) Initial handshakes and key exchanges are secured using an RSA ECB – SHA256 mechanism.

· The RSA key pairs used here are the ones associated with the X509 certificates at point (a).

For more information on the DTS Security implementation, please see:

· Security Outline

· Registration and Authentication

· Security Setup

6.8.1 Outline

The DTS security implementations uses the previously listed technology stacks as follows:

· A certificate authority signs a root certificate (CTRL CERT) for the DTS Controller module.
This certificate contains the Controller’s public key (CTRL PUB KEY). This certificate is also
accompanied by its complementary private key (CTRL PRIV KEY).

 Each DTS deployment is capable of generating and maintaining a certificate authority. Alternatively, a 3rd party CA
can be involved.

· Each connected component then receives a component certificate (COMP CERT) signed using
CTRL CERT, as well as two RSA keys: The Controller’s public key (CTRL PUB KEY) and the
private key complementary to the component certificate (COMP PRIV KEY).

247

248

252

210

248

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

· When the component registers with the controller, it provides its COMP CERT to be verified
using CTRL CERT. True ownership of the certificates is proven using the complementary private
keys to encrypt parts of the registration request and reply.

· This registration exchange also provides the registered component with the AES keys which will
be used in further communication on the initial channels. Each component, as well as the
controller have their own main communication channel and other channels can be opened later
depending on circumstances. Each channel has its own AES key. The initial AES key transfer is
secured using the COMP PUB/PRIV KEY pair.

· Subsequent communication on the main channels will be encrypted with the previously
exchanged AES keys.

· Whenever a new channel is put in use, its availability is communicated to the components
concerned and the AES key is included. This communication is always done on an already
secured channel (usually the component’s main channel).

6.8.2 Registration and Authentication

Registration and Authentication of DTS Components to the system is achieved using an initial
handshake process which ensures that all the actors involved are genuine and authorized DTS
components.

The following diagrams present the entire initial handshake process in detail.

· The first step is for the Component that wants to register to compose its Registration Request.

249

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

250

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

The Authentication Package has exactly the following binary format:

Bytes Value

0 to 7 Little Endian representation of the current timestamp (as a 64-bit
signed integer (long) representing milliseconds since epoch)

8 to 15 Little Endian representation of the byte length of COMP CERT (as a
64-bit signed integer (long) - [COMP_CERT_length])

16 to [COMP_CERT_length]
+ 15

The Component's certificate encoded as a byte array - COMP
CERT

Rest The component signature as a byte array

The resulting byte array is encoded as a Base64 String and included in the Registration Request.

· Next, the Controller verifies the request and composes a response that will authenticate itself
to the Component while also providing the encryption keys for further communication.

210

251

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

252

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

The encrypted channel keys and component signature are encoded as Base64 strings for inclusion
in the registration response.

· Finally, the Component verifies the Controller's response and begins normal operations.

6.8.3 Setup

To setup the DTS security system, a certificate authority is required. This certificate authority will
sign the DTS deployment’s root certificate (CTRL CERT), which, in turn, will sign the certificates for
the connected components (COMP CERT).

While 3rd party CAs can be used, DTS also provides an easy-to-use script (x509/setup.sh) which
generates a CA and a root certificate (CTRL CERT) using OpenSSL, as well as key files in the
required formats (CTRL PRIV KEY, CTRL PUB KEY).

253

DTS Product Manual © 2023 Realworld Systems B.V.

Technical Guide

The next step is to enable security for the Controller modules by setting the following environment
variables on dts-controller and dts-gui-controller:

DTS_ENABLE_SECURITY = true
DTS_X509_CERTIFICATE_PATH = [Path to CTRL CERT]
DTS_RSA_PRIVATE_KEY_PATH = [Path to CTRL PRIV KEY in DER format]

From here on, only secured components will be able to connect to DTS.

To secure a component, a certificate must be generated for it. This certificate (COMP CERT) must
be signed by CTRL CERT.

DTS also provides a script to facilitate this action (x509/create-cert.sh), provided the system is
secured using a CA created using the previous script and not a 3rd party or custom one. This script
generates and signs the certificate (COMP CERT) and produces key files in the required formats
(COMP PRIV KEY, COMP PUB KEY). These files will need to be made available to the component
for opening in its local environment, together with the Controller's public key file (CTRL PUB KEY).

Finally, security can now be enabled on the component by setting its following environment
variables:

DTS_ENABLE_SECURITY=true
DTS_X509_CERTIFICATE_PATH = [Path to COMP CERT]
DTS_RSA_PRIVATE_KEY_PATH = [Path to COMP PRIV KEY in DER format]
DTS_CTRL_PUBLIC_KEY_PATH = [Path to CTRL PUB KEY in DER format]

Development

256

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7 Development

This section is aiming to guide you through using DTS's APIs to connect your applications to the
DTS middleware or build specific custom endpoints for your DTS environment.

Some examples of possible development relating to DTS include:

· Creating a custom data pump (requesting data from various data sources through DTS, then
processing and pumping it into some other system).

· Linking an existing application to DTS data (e.g. feed a complex asset management UI with data
from otherwise incompatible systems).

· Creating a bespoke DTS connector library for a specialized data source.

Depending on the purpose of the development, only one of the two facets of DTS extensibility is
usually used:

· Client Development

· Producer Development

For any DTS related development and even for some administrative jobs, it is very helpful to be
familiar with the formats used in the DTS Repository (Mongo).

· Project Artifacts

7.1 Client

In order to build or adapt an application to consume data from various data sources via DTS, some
level of extension of DTS's Client functionality usually needs to be developed.

DTS Client functionality can be accessed in the following ways (in ascending order of
customization possibilities, feature set, but also implementation difficulty) :

· Using one of the pre-built client implementations providing simplified access in a certain
environment: Smallworld Client, Webservice Client

· Implementing the fully featured API library: Java

· Hooking in directly communication backbone API: Redis/JSON

256

288

288

257

257

274

257

DTS Product Manual © 2023 Realworld Systems B.V.

Development

The first two options allow using high level APIs to connect to DTS, access projects and make
requests, while the last option opens up DTS to direct management via internal commands that can
be invoked from any programming environment for which a Redis driver exists, but requires more
micromanagement of operations.

7.1.1 Pre-Built

DTS provides some out-of-the-box Client implementations for easy use in specific environments.
Each Pre-Built Client implementation is purpose-built for the targeted environment and caters to its
native workflow patterns.

The currently available Client implementations are:

· The Smallworld Client

§ Connects to DTS using the Java Client Library .

§ Provides access to DTS resources from the Magik environment.

§ Translates all artifacts into native Smallworld objects that can be directly used in the
environment.

· The Webservice Client

§ Connects to DTS using the Java Client Library .

§ Provides access to DTS resources via HTTP Requests.

§ Must be generated using the Web UI where it can be greatly customized without coding.

§ Translates all artifacts into standardized Web objects.

7.1.2 Java Library

DTS provides a fully featured Client library for Java with its dts-client package. This section
outlines how the library can be used for connecting to DTS and making requests and provides
some insight into implementing custom DTS clients.

Library package

The Client library package is currently only available as a set of JARs which includes all
dependencies. This means that you can import it into your project as is, or you can set it up in a
custom repository (Maven, Gradle, etc.), depending on your development environment. For
reference, the external dependencies are (Gradle format):

176

257

186

257

70

258

DTS Product Manual © 2023 Realworld Systems B.V.

Development

· redis.clients:jedis:3.2.0

· com.google.code.gson:gson:2.8.6

· org.ow2.asm:asm-all:5.2

· commons-codec:commons-codec:1.15

· com.sun.mail:javax.mail:1.6.2

The Client library package is built and tested using Oracle JDK 8, which is the minimum version
supported for development using the library.

Environment

While your implementation can make use of any environment variables it requires, the following are
leveraged by the DTS client libraries.

Variable Default Function

DTS_REDIS_HOST_NAMElocalhost The host name or IP address of the DTS Redis server
(Internal Communication Bus)

DTS_REDIS_PORT 6379 The port of the Redis server

DTS_CLIENT_NAME anonymou
s

A name given to the client that will be used to tag it
administrative purposes. This name will be suffixed with
"@[hostname]".

DTS_DEBUG_LOGGING false Flag to toggle debug logging

DTS_ENABLE_SECURITYfalse Flag to toggle internal security (if the central DTS
deployment is secured, clients are also required to be)

DTS_X509_CERTIFICATE_PATHnull The local path to the X509 certificate file that was generated
for this client (see Security Setup)

DTS_RSA_PRIVATE_KEY_PATHnull The local path to the file containing the RSA Private Key
corresponding to the X509 certificate in DER format.

DTS_CTRL_PUBLIC_KEY_PATHnull The local path to the file containing the RSA Public Key of
the DTS Controller in DER format.

In a standard secured DTS environment, the values for the Client environment variables may look
something like this:

DTS_REDIS_HOST_NAME=dts-server # Host name for the machine running the Docker platform on which DTS is deployed
DTS_REDIS_PORT=7877 # The default port the DTS contained Redis server is mapped to

218

246

252

259

DTS Product Manual © 2023 Realworld Systems B.V.

Development

DTS_CLIENT_NAME=test1 # Assuming the host name of the machine running the client is "workstation0", the client will be known as "test1@workstation0"
DTS_DEBUG_LOGGING=true
DTS_ENABLE_SECURITY=true
DTS_X509_CERTIFICATE_PATH=/home/dts/client/security/test1.crt
DTS_RSA_PRIVATE_KEY_PATH=/home/dts/client/security/test1.key.der
DTS_CTRL_PUBLIC_KEY_PATH=/home/dts/client/security/ca.pubkey.der

Usage

The usage of the Java Client Library is best illustrated by example. Please see:

· Direct Usage Example

· Custom Implementation Example

The library is also accompanied by Javadoc describing the details of all classes, constants,
methods, etc.

7.1.2.1 Direct Usage Example

In this example, we use the DTSClient class as-is and go through the initialization process and a
few requests.

The code example assumes the following project structure is available:

Project Connector Asset Type Parameters

myproject myOraConnect
or

DTSDEMO.NICE_TABLE Collectio
n

N/A

DTSDEMO.NICE_FUNCTION Routine INT32, STRING

DTSDEMO.NICE_STREAMY_FU
NCTION

Streamin
g
Routine

INT32

kafka test-topic Topic N/A

N/A nice_aggregate Aggregat
e

N/A

 To see how to create projects, connectors and configure assets, please see the Web UI Section

259

263

26

260

DTS Product Manual © 2023 Realworld Systems B.V.

Development

import com.alloy.dts.DTSException;
import com.alloy.dts.client.DTSClient;
import com.alloy.dts.client.DTSDatasource;
import com.alloy.dts.client.DTSEndpoint;
import com.alloy.dts.client.DTSAggregationEndpoint;
import com.alloy.dts.model.DTSPredicate;
import com.alloy.dts.record.IValuesContainer;
import com.alloy.dts.record.StreamRecord;

import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

public class DirectDTSClientExample {

 public static void main (String [] args) throws Exception {

 // First create an instance of DTSClient
 DTSClient dtsClient = new DTSClient();

 // Open the DTS project in the client
 // This sends a request to the DTS Controller to make the project available to the Client
 // The Controller will respond immediately with some information regarding the project,
 // and orders the necessary producers to be started if they aren't already
 // this means that the process is asynchronous and data endpoints will not become available
 // the instant the open() method returns.
 dtsClient.open("myproject");

 // Retrieve the datasource created for the opened project
 DTSDatasource ds = dtsClient.getDatasource("myproject");

 // Make sure the datasource is configured to contain our connector
 ds.checkEndpointName("myOraConnector");

 // We must now wait for the endpoint for our connector to become available
 ds.waitForAllEndpoints(60 * 1000);

 // We get a handle on the endpoint for the connector
 DTSEndpoint myEndpoint = ds.getEndpoint("myOraConnector");
 // We open a stream to the table we want using a certain query predicate
 String streamId = myEndpoint.openRecordStream("DTSDEMO.NICE_TABLE",
 DTSPredicate.eq("value", "100"));
 // We fully consume the stream
 while(myEndpoint.streamHasMore(streamId)) {
 // 100 records at a time
 List<? extends StreamRecord> records = myEndpoint.getRecordsFromStream(streamId, 100);
 for (StreamRecord rec : records) {
 // record fields can be accessed using reflection or transforming them into Maps
 // here, we use maps

261

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 Map<String, Object> recordMap = rec.asMap();
 /*
 do something with the record
 */
 }
 }
 // Stream is spent, we close it
 myEndpoint.closeRecordStream(streamId);

 // Let's also invoke a stored function that receives 2 arguments
 IValuesContainer results = myEndpoint.executeCall("DTS_DEMO.NICE_FUNCTION", new Object[] {12,
"active"});
 // And access the single result using reflection this time
 Class resultClass =
dtsClient.getPayloadFactory().getTypesCluster().getClassForTypeName("DTS_DEMO.NICE_FUNCTION.RESU
LTS");
 Object theResult = resultClass.getField("res1").get(results);
 /*
 do something with it
 */

 // We'll now get a record from an aggregate

 // We get a handle on the aggregation endpoint. There is just one per project datasource.
 DTSAggregationEndpoint aggEndpoint = ds.getAggregationEndpoint();

 // We open a stream on the aggregate as if it were a regular collection
 streamId = aggEndpoint.openRecordStream("nice_aggregate", DTSPredicate.eq("id", "3"));

 // And we pick up our aggregate record
 StreamRecord record = aggEndpoint.getRecordsFromStream(streamId, 1).get(0);

 /*
 do something with it
 */

 // Stream is not needed anymore, we close it
 aggEndpoint.closeRecordStream(streamId);

 // Now let's use a remote call that returns a record stream
 streamId = myEndpoint.executeStreamCall("DTS_DEMO.NICE_STREAMY_FUNCTION", new Object[]
{1234});

 // We fully consume the stream
 while(myEndpoint.streamHasMore(streamId)) {
 // 100 records at a time
 List<? extends StreamRecord> records = myEndpoint.getRecordsFromStream(streamId, 100);
 for (StreamRecord rec : records) {
 // record fields can be accessed using reflection or transforming them into Maps
 // here, we use maps
 Map<String, Object> recordMap = rec.asMap();
 /*

262

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 do something with the record
 */
 }
 }
 // Stream is spent, we close it
 myEndpoint.closeRecordStream(streamId);

 // Let's also do some work on a topic
 DTSEndpoint kafkaEndpoint = ds.getEndpoint("kafka");

 // First, we can subscribe to it -> which gives us a stream we can consume
 // We provide a group ID so that Kafka remembers where we leave off
 streamId = kafkaEndpoint.subscribeToTopic("test-topic", "dts-java");

 // Now we can poll some entries from the topic
 List<? extends StreamRecord> records = kafkaEndpoint.pollTopic(streamId, 5000);
 for (StreamRecord rec : records) {
 Map<String, Object> recordMap = rec.asMap();
 // topic records will always contain the key and msg attributes
 // however, their types can vary
 System.out .println(recordMap.get("key") + " -> " + recordMap.get("msg"));
 }

 // We unsubscribe to release the stream
 kafkaEndpoint.unsubscribeFromTopic(streamId);

 // We can also do some pushing
 // First we do a single string/string push
 kafkaEndpoint.pushToTopic("test-topic", "some_key", "some_message");
 // Now let's push a record with a binary message
 IValuesContainer aRecord = (IValuesContainer) dtsClient.getPayloadFactory().getTypesCluster()
 .getClassForTypeName("test-topic.RECORD").newInstance();
 aRecord.readValues(new Object[] {"some_other_key", new byte[]{67,83,28,91,4,77,82,12}});
 kafkaEndpoint.pushToTopic("test-topic", aRecord);
 // Let's also push multiple records at once
 kafkaEndpoint.pushManyToTopic(
 "test-topic",
 new Object[] {"key1", "key2", "key3"},
 new Object[] {"msg1", "msg2", "msg3"});

 // Finally, let's shut down the client
 // This will ensure all streams are closed and all resources are released
 dtsClient.closeAllAndShutdown();
 }
}

263

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7.1.2.2 Custom Implementation Usage

This example shows a more complex implementation of a DTSClient, where we extend the class
and customize elements to suit our purposes.

First, the Client (CustomClient.java):

import com.alloy.dts.DTSException;
import com.alloy.dts.client.*;
import com.alloy.dts.model.DTSPredicate;
import com.alloy.dts.record.StreamRecord;
import com.alloy.dts.type.DTSTypesClusterManager;

import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

import static com.alloy.dts.type.DTSTypes.*;

public class CustomClient extends DTSClient {

 // Our client will be a singleton for ease of use throughout the application
 private static CustomClient instance ;
 public static CustomClient getInstance() {
 if (instance == null) {
 instance = new CustomClient();
 }
 return instance ;
 }

 // We will only use one collection, so let's keep it here
 DTSRemoteCollection collection;

 public CustomClient() {
 super();
 // we also want to override some root types in our client
 initSpecialTypes();
 }

 private void initSpecialTypes() {
 // overriding types is as simple as calling this static method on DTSTypesClusterManager
 // but be aware that you will most likely need to define and implement
 // custom Serialization/Deserialization routines
 DTSTypesClusterManager.overrideRootType (GEOMETRY_TYPE , CustomGeometry.class);
 DTSTypesClusterManager.overrideRootType (POINT_TYPE , CustomGeometry.class);
 DTSTypesClusterManager.overrideRootType (LINE_TYPE , CustomGeometry.class);
 DTSTypesClusterManager.overrideRootType (AREA_TYPE , CustomGeometry.class);
 }

 // We override the open() method to automatically wait for our endpoint and set our collection
 @Override

264

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 public void open(String projectName) throws TimeoutException, DTSException{
 super.open(projectName);
 DTSDatasource ds = getDatasource(projectName);
 if (!ds.waitForEndpoints (Arrays.asList(" myOnlyConnector"), 60 * 1000)) {
 throw new DTSException(" No endpoint" , ex);
 }
 collection = ds.getEndpoint(" myOnlyConnector").getCollection(" public.all_things");
 }

 // We decide we want our client to react in some way when a stream times out
 @Override
 public void onClosedStream(String streamId) {
 System.out .println(" Stream " + streamId + " has timed out!");
 /*
 do something
 */
 }

 // and here is the point of our implementation - a nice shortcut to getting the geometric center of an ob ject
 public double[] getObjectCenter(String objectId) throws Exception {
 // we only need 1 record, but we still need a stream
 // we'll use another way of managing it this time
 // first we get the DTSRemoteRecordStream object using createStream on the collection (which gets fed our query
predicate)
 DTSRemoteRecordStream stream = collection.createStream(DTSPredicate.eq(" id" , objectId));
 // then we advance the stream by 1 so that the record we're looking for makes its way into the buffer
 stream.advance(1);
 // then we grab the record from the buffer
 StreamRecord object = (StreamRecord) stream.getCurrentRecordContainer().getRecords().get(0);
 // we use the getFieldValue() method to extract the geometry (which will be in our CustomGeometry format
because we overrode the types)
 CustomGeometry geom = (CustomGeometry) object.getFieldValue(" geom");
 // and finally call a method we created on CustomGeometry that calculates its center
 // while this particular result could easily be obtained without overriding root types and defining custom
deserializers
 // we are using it to illustrate a point and it is easy to see how this can be a powerful tool in more complex
scenarios
 return geom.getCenter();
 }
}

The CustomGeometry class we're using (CustomGeometry.java):

import com.alloy.dts.DTSException;
import com.alloy.dts.type.json.geojson.GeoJson;
import com.alloy.dts.type.json.geojson.GeoJsonLineString;
import com.alloy.dts.type.json.geojson.GeoJsonPoint;
import com.alloy.dts.type.json.geojson.GeoJsonPolygon;

import java.util.ArrayList;

public class CustomGeometry {

 // We'll hold the GeoJson that comes through
 private GeoJson originalGeom;

265

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 public GeoJson getOriginalGeom() {
 return originalGeom;
 }

 public void setOriginalGeom(GeoJson originalGeom) {
 this.originalGeom = originalGeom;
 }

 // And calculate the center when needed
 public double[] getCenter() throws DTSException {
 if (getOriginalGeom() instanceof GeoJsonPoint) {
 // trivial...
 GeoJsonPoint point = (GeoJsonPoint) getOriginalGeom();
 return point.getCoordinates();
 } else if (getOriginalGeom() instanceof GeoJsonLineString) {
 // naive...
 GeoJsonLineString line = (GeoJsonLineString) getOriginalGeom();
 ArrayList<double[]> coords = line.getCoordinates();
 return new double[] {
 (coords.get(0)[0] - coords.get(coords.size()-1)[0]) / 2,
 (coords.get(0)[1] - coords.get(coords.size()-1)[1]) / 2
 };
 } else if (getOriginalGeom() instanceof GeoJsonPolygon) {
 // eh...
 throw new DTSException(" Not worth it...");
 }
 throw new DTSException(" Unsupported geometry");
 }
}

And the custom Deserializer (CustomGeometryDeserializer.java):

// the package is important here! In order for the deserializer to register, it needs to be in this package!
package com.alloy.dts.type.json;

import com.mypackage.CustomGeometry;
import com.alloy.dts.type.json.geojson.GeoJson;
import com.google.gson.*;

import java.lang.reflect.Type;

// Our deserializer needs to implement JsonDeserializer<the_class_we_want_to_output>
public class CustomGeometryDeserializer implements JsonDeserializer<CustomGeometry> {

 public static void registerWithGsonBuilder(GsonBuilder builder){
 builder.registerTypeAdapter(CustomGeometry.class, new CustomGeometryDeserializer());
 }

 // And here is where we implement our deserialization
 @Override
 public CustomGeometry deserialize(JsonElement json, Type typeOfT, JsonDeserializationContext context) throws
JsonParseException {
 // We simply use the deserialization context to deserialize the ob ject to the class it was meant to be
 GeoJson geoJson = context.deserialize(json, GeoJson.class);

266

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 // The we create our custom object and place the original geometry inside it
 CustomGeometry geom = new CustomGeometry();
 geom.setOriginalGeom(geoJson);

 return geom;
 }
}

7.1.3 .NET Library

DTS provides a fully featured Client library for Microsoft® .NET™ with its dts-client-dotnet
package. This section outlines how the library can be used for connecting to DTS and making
requests and provides some insight into implementing custom DTS clients.

Library package

The .NET Client library package is currently only available as a nuget package which includes the
base library and references all required dependencies. This means that you can import it into your
VS project as is, or you can extract it and include the DLLs manually and resolve the dependencies.
For reference, the external dependencies are:

· Microsoft.CodeAnalysis.Common (4.2.0)

· Microsoft.CodeAnalysis.CSharp (4.2.0)

· ServiceStack.Redis (6.1.0)

· System.CodeDom (6.0.0)

The .NET Client library package is built and tested using the .NET 6.0 Framework.

 If you require a build in a different .NET Framework, please contact us for a custom build.

Environment

While your implementation can make use of any environment variables it requires, the following are
leveraged by the DTS client libraries.

Variable Default Function

DTS_REDIS_HOST_NAMElocalhost The host name or IP address of the DTS Redis server
(Internal Communication Bus)

DTS_REDIS_PORT 6379 The port of the Redis server

218

267

DTS Product Manual © 2023 Realworld Systems B.V.

Development

DTS_CLIENT_NAME anonymou
s

A name given to the client that will be used to tag it
administrative purposes. This name will be suffixed with
"@[hostname]".

DTS_DEBUG_LOGGING false Flag to toggle debug logging

DTS_ENABLE_SECURITYfalse Flag to toggle internal security (if the central DTS
deployment is secured, clients are also required to be)

DTS_X509_CERTIFICATE_PATHnull The local path to the X509 certificate file that was generated
for this client (see Security Setup)

DTS_RSA_PRIVATE_KEY_PATHnull The local path to the file containing the RSA Private Key
corresponding to the X509 certificate in DER format.

DTS_CTRL_PUBLIC_KEY_PATHnull The local path to the file containing the RSA Public Key of
the DTS Controller in DER format.

In a standard secured DTS environment, the values for the Client environment variables may look
something like this:

DTS_REDIS_HOST_NAME=dts-server # Host name for the machine running the Docker platform on which DTS is deployed
DTS_REDIS_PORT=7877 # The default port the DTS contained Redis server is mapped to
DTS_CLIENT_NAME=test1 # Assuming the host name of the machine running the client is "workstation0", the client will be known as "test1@workstation0"
DTS_DEBUG_LOGGING=true
DTS_ENABLE_SECURITY=true
DTS_X509_CERTIFICATE_PATH=/home/dts/client/security/test1.crt
DTS_RSA_PRIVATE_KEY_PATH=/home/dts/client/security/test1.key.der
DTS_CTRL_PUBLIC_KEY_PATH=/home/dts/client/security/ca.pubkey.der

Usage

The usage of the .NET Client Library is best illustrated by example. Please see:

· Direct Usage Example

· Custom Implementation Example

7.1.3.1 Direct Usage Example

In this example, we use the DTSClient class as-is and go through the initialization process and a
few requests.

The code example assumes the following project structure is available:

246

252

267

270

268

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Project Connector Asset Type Parameters

myproject myOraConnect
or

DTSDEMO.NICE_TABLE Collectio
n

N/A

DTSDEMO.NICE_FUNCTION Routine INT32, STRING

DTSDEMO.NICE_STREAMY_FU
NCTION

Streamin
g
Routine

INT32

N/A nice_aggregate Aggregat
e

N/A

 To see how to create projects, connectors and configure assets, please see the Web UI Section

using Alloy.DTS.Base.Model;

using Alloy.DTS.Base.Record;

using Alloy.DTS.Client;

namespace Alloy.DTS.ClientExamples

{

 public class DirectDTSClientExample

 {

 public static void Main(string[] args)

 {

 // First create an instance of DTSClient

 DTSClient dtsClient = new DTSClient();

 // Open the DTS project in the client

 // This sends a request to the DTS Controller to make the project available to

the Client

 // The Controller will respond immediately with some information regarding the

project,

 // and orders the necessary producers to be started if they aren't already

 // this means that the process is asynchronous and data endpoints will not

become available

 // the instant the open() method returns.

 dtsClient.Open("myproject");

 // Retrieve the datasource created for the opened project

 DTSDatasource ds = dtsClient.GetDatasource("myproject");

 // Make sure the datasource is configured to contain our connector

 ds.CheckEndpointName("myOraConnector");

 // We must now wait for the endpoint for our connector to become available

 ds.WaitForAllEndpoints(60 * 1000);

26

269

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 // We get a handle on the endpoint for the connector

 DTSEndpoint myEndpoint = ds.GetEndpoint("myOraConnector");

 // We open a stream to the table we want using a certain query predicate

 string streamId = myEndpoint.OpenRecordStream("DTSDEMO.NICE_TABLE",

 DTSPredicate.Eq("value", "100"));

 // We fully consume the stream

 while (myEndpoint.StreamHasMore(streamId))

 {

 // 100 records at a time

 List <IValuesContainer> records = myEndpoint.GetRecordsFromStream(streamId,

100);

 foreach (IValuesContainer rec in records)

 {

 // record fields can be accessed using reflection or transforming them

into Maps

 // here, we use maps

 Dictionary<string, object> recordMap = rec.AsMap();

 /*

 do something with the record

 */

 }

 }

 // Stream is spent, we close it

 myEndpoint.CloseRecordStream(streamId);

 // Let's also invoke a stored function that receives 2 arguments

 IValuesContainer results = myEndpoint.ExecuteRoutine("DTS_DEMO.NICE_FUNCTION",

new Object[] { 12, "active" });

 // And access the single result using reflection this time

 Type resultClass =

dtsClient.PayloadFactory.TypesCluster.GetSystemType("DTS_DEMO.NICE_FUNCTION.RESULTS");

 object theResult = resultClass.GetProperty("res1").GetValue(results);

 /*

 do something with it

 */

 // We'll now get a record from an aggregate

 // We get a handle on the aggregation endpoint. There is just one per project

datasource.

 DTSAggregationEndpoint aggEndpoint = ds.AggregationEndpoint;

 // We open a stream on the aggregate as if it were a regular collection

 streamId = aggEndpoint.OpenRecordStream("nice_aggregate", DTSPredicate.Eq("id",

"3"));

 // And we pick up our aggregate record

 IValuesContainer record = aggEndpoint.GetRecordsFromStream(streamId, 1)[0];

 /*

 do something with it

 */

270

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 // Stream is not needed anymore, we close it

 aggEndpoint.CloseRecordStream(streamId);

 // Finally, let's use a remote call that returns a record stream

 streamId = myEndpoint.ExecuteStreamRoutine("DTS_DEMO.NICE_STREAMY_FUNCTION",

new Object[] { 1234 });

 // We fully consume the stream

 while (myEndpoint.StreamHasMore(streamId))

 {

 // 100 records at a time

 List <IValuesContainer > records =

myEndpoint.GetRecordsFromStream(streamId, 100);

 foreach (IValuesContainer rec in records)

 {

 // record fields can be accessed using reflection or transforming them

into Maps

 // here, we use maps

 Dictionary<string, object> recordMap = rec.AsMap();

 /*

 do something with the record

 */

 }

 }

 // Stream is spent, we close it

 myEndpoint.CloseRecordStream(streamId);

 }

 }

}

7.1.3.2 Custom Implementation Example

This example shows a more complex implementation of a DTSClient, where we extend the class
and customize elements to suit our purposes.

First, the Client (CustomClient.cs):

using Alloy.DTS.Base.Model;

using Alloy.DTS.Base.Record;

using Alloy.DTS.Base.Type;

using Alloy.DTS.Client;

namespace Alloy.DTS.ClientTest

{

 public class CustomClient : DTSClient

 {

271

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 // Our client will be a singleton for ease of use throughout the application

 private static CustomClient instance;

 public static CustomClient Instance

 {

 get {

 if (instance == null)

 {

 instance = new CustomClient();

 }

 return instance;

 }

 }

 // We will only use one collection, so let's keep it here

 DTSRemoteCollection? _collection;

 public CustomClient() : base()

 {

 // we also want to override some root types in our client

 initSpecialTypes();

 }

 private void initSpecialTypes()

 {

 // overriding types is as simple as calling this static method on

DTSTypesClusterManager

 // but be aware that you will most likely need to define and implement

 // custom Serialization/Deserialization routines

 DTSTypesCluster.OverrideRootType(DTSTypes.GEOMETRY_TYPE,

typeof(CustomGeometry));

 DTSTypesCluster.OverrideRootType(DTSTypes.POINT_TYPE, typeof(CustomGeometry));

 DTSTypesCluster.OverrideRootType(DTSTypes.LINE_TYPE, typeof(CustomGeometry));

 DTSTypesCluster.OverrideRootType(DTSTypes.AREA_TYPE, typeof(CustomGeometry));

 // Register the CustomGeometry serializer

 JsonEngine.Options.Converters.Add(new CustomGeometrySerializer());

 }

 // We override the open() method to automatically wait for our endpoint and set our

collection

 public override void Open(string projectName) {

 base.Open(projectName);

 DTSDatasource ds = GetDatasource(projectName);

 if (!ds.WaitForEndpoints(new List<string> { "myOnlyConnector" }, 60 * 1000))

 throw new Exception("No endpoint");

 _collection =

ds.GetEndpoint("myOnlyConnector").Collections["public.all_things"];

 }

 // We decide we want our client to react in some way when a stream times out

272

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 protected override void OnClosedStream(string streamId)

 {

 Console.WriteLine("Stream " + streamId + " has timed out!");

 /*

 do something

 */

 }

 // and here is the point of our implementation - a nice shortcut to getting the

geometric center of an object

 public double[] GetObjectCenter(string objectId)

 {

 // we only need 1 record, but we still need a stream

 // we'll use another way of managing it this time

 // first we get the DTSRemoteRecordStream object using createStream on the

collection (which gets fed our query predicate)

 DTSRemoteRecordStream stream = _collection.CreateStream(DTSPredicate.Eq("id",

objectId));

 // then we advance the stream by 1 so that the record we're looking for makes

its way into the buffer

 stream.Advance(1);

 // then we grab the record from the buffer

 IValuesContainer obj = stream.RecordContainer.Records[0];

 // we use the getFieldValue() method to extract the geometry (which will be in

our CustomGeometry format because we overrode the types)

 CustomGeometry geom = (CustomGeometry)obj.AsMap()["geom"];

 // and finally call a method we created on CustomGeometry that calculates its

center

 // while this particular result could easily be obtained without overriding

root types and defining custom deserializers

 // we are using it to illustrate a point and it is easy to see how this can be

a powerful tool in more complex scenarios

 return geom.GetCenter();

 }

 }

}

The CustomGeometry class we're using (CustomGeometry.cs):

using Alloy.DTS.Base.Model.Geometry;

namespace Alloy.DTS.ClientTest

{

 public class CustomGeometry

 {

 // We'll hold the GeoJson that comes through

 public GeoJson OriginalGeom { get; set; }

 public CustomGeometry(GeoJson geoJson)

 {

273

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 OriginalGeom = geoJson;

 }

 // And calculate the center when needed

 public double[] GetCenter()

 {

 if (OriginalGeom is GeoJsonPoint) {

 // trivial...

 GeoJsonPoint point = (GeoJsonPoint)OriginalGeom;

 return point.Coordinates;

 } else if (OriginalGeom is GeoJsonLineString) {

 // naive...

 GeoJsonLineString line = (GeoJsonLineString)OriginalGeom;

 List<double[]> coords = line.Coordinates;

 return new double[] {

 (coords[0][0] - coords[coords.Count-1][0]) / 2,

 (coords[0][1] - coords[coords.Count-1][1]) / 2

 };

 } else if (OriginalGeom is GeoJsonPolygon) {

 // eh...

 throw new Exception("Not worth it...");

 }

 throw new Exception("Unsupported geometry");

 }

 }

}

And the custom Deserializer (CustomGeometrySerializer.cs):

using Alloy.DTS.Base.Model;

using Alloy.DTS.Base.Model.Geometry;

using System.Text.Json;

using System.Text.Json.Serialization;

namespace Alloy.DTS.ClientTest

{

 public class CustomGeometrySerializer : JsonConverter<CustomGeometry>

 {

 // We will need some clean JsonSerializerOptions as well

 private JsonSerializerOptions _cleanSerializerOptions = new JsonSerializerOptions

 {

 WriteIndented = true,

 Converters =

 {

 new ResourceIdentifierSerializer(),

 new GeoJsonSerializer()

 }

 };

274

DTS Product Manual © 2023 Realworld Systems B.V.

Development

 public override CustomGeometry? Read(ref Utf8JsonReader reader, Type typeToConvert,

JsonSerializerOptions options)

 {

 // We simply use the serializer options to deserialize the object to the class

it was meant to be

 GeoJson geoJson = (GeoJson)JsonSerializer.Deserialize(

 JsonDocument.ParseValue(ref reader).RootElement.GetRawText(),

 typeof(GeoJson),

 _cleanSerializerOptions);

 // The we create our custom object and place the original geometry inside it

 CustomGeometry geom = new CustomGeometry(geoJson);

 return geom;

 }

 public override void Write(Utf8JsonWriter writer, CustomGeometry value,

JsonSerializerOptions options)

 {

 throw new NotImplementedException();

 }

 }

}

7.1.4 Redis/JSON

All DTS components communicate to the Core via the Internal Communication Bus (ICB), which is
a Redis Server. Messages exchanged on the Redis channels are all in JSON format, following a
specific protocol.

In this section we'll illustrate how an application can register as a DTS Client, make requests and
parse responses using direct ICB communication.

Messages

All messages exchanged by DTS components have the following standard form:

{
"_id" : "",
"_correlationId" : "",

 "replyToChannel" : "",
"replyEncryptionKey" : "",
"payload" : {

"payloadMetadata" : {
"payloadClassKey" : "",
"arrayPayload" : false

275

DTS Product Manual © 2023 Realworld Systems B.V.

Development

},
"payloadJSON" : ""

},
"error" : {

"name" : "",
"message" : "",
"type" : "",
"traceback" : ""

}
}

Where the attributes represent the following:

Attribute Value Note

_id A unique identifier for the
message - generally a random
UUID

The component creating the message
must generate it and ensure
uniqueness

_correlationId The _id of another message that
this message relates to -
generally used for responses to
reference requests

A component responding to a certain
message must use the _id of the
request as the _correlationId of its
response

replyToChannel The name of the Redis channel
on which replies to the message
are expected

A component responding to a certain
message must send the response on
the replyToChannel of the request.
Conversely, when making a request, a
component must set the
replyToChannel where they expect the
response.

replyEncryptionKeyThe AES encryption key
corresponding to replyToChannel

This parameter is only used when
communications are secured. Its
purpose is for the requesting party to
communicate to the responder how to
encrypt messages that will be sent on
a newly opened channel. It only needs
to be included for newly opened
channels or when a change of
encryption key is desired.

Any component receiving a request that
includes the replyEncryptionKey must
keep it stored and always use it for
messages sent on replyToChannel .

276

DTS Product Manual © 2023 Realworld Systems B.V.

Development

payload Wrapper for the actual payload of
the message

payloadMetadataWrapper for the metadata of the
message's payload

payloadClassKeyThe DTS Type Key of the payload This is the key by which DTS
components know what class to use
for deserializing the payload.

arrayPayloadFlag that communicates whether
the payload is a single object or
an array

payloadJSON The actual payload in JSON
format

The payload json is actually wrapped in
a string. This means that all " (double
quote) characters need to be escaped.

error Wrapper for an error object Should only exist on responses when
an error happened while processing the
request.

name The name of the error

message The complete error message /
description

type The type of error

traceback The stack trace of the error

 If a certain attribute is unknown or not applicable for a given message, i t must be omitted.
Including an attribute that is an empty string can have unforeseen consequences.

Client Commands

Client Commands are Request-Response entities that facilitate all the operations that a Client can
perform within DTS. Requests and Responses are marshalled over the ICB wrapped in messages
in the format above where they occupy the payload -> payloadJSON field.

The commands relevant to the Client are:

· Registration Command

· Project Command

· Connector Command

278

280

282

277

DTS Product Manual © 2023 Realworld Systems B.V.

Development

· Record Stream Command

· Execute Remote Command

Standard Sequence

The standard sequence for a Client to connect to the DTS Core and make requests is the following:

· Register

§ [Secure Only] Build an Authentication Package using the component certificate, component
private key and controller public key (see Registration and Authentication).

§ Send a Registration Command Request (including the Authentication Package if needed)
with a temporary replyToChannel .

§ Read the Registration Command Response (RCResp) from the replyToChannel .

§ [Secure Only] Decrypt the signature and keys provided in the RCResp using the component
private key.

§ [Secure Only] Verify that the signature in the RCResp matches the signature sent in the
Authentication Package .

§ Register the Redis channel provided by the RCResp (hereafter referred to as
componentChannel) and start a reader process on it.

§ [Secure Only] assign the controllerKey from RCResp to be used to encrypt all messages
sent on DTS:MIDDLEWARE:CHANNEL.

§ [Secure Only] assign the componentKey from RCResp to be used to decrypt all messages
received on the channel provided by RCResp.

§ [Optional] Setup a handler for unprompted Record Stream Command Responses received
on the componentChannel (stream timeouts).

· Open a project

§ Send a Project Command Request to Open the desired project (use componentChannel as
replyToChannel for convenience).

§ Read the Project Command Response from the replyToChannel .

§ [Optional] Store or verify the list of connector names

· Receive connector entries

§ Handle each Connector Command Request received on the componentChannel by
constructing any structures you need based on the metadata the requests provide.

§ Send Connector Command Responses to the request's replyToChannel to acknowledge
each connector entry. Use the error attribute of the response message if something went
wrong on the client end.

284

286

248

278

DTS Product Manual © 2023 Realworld Systems B.V.

Development

§ [Optional] Wait for the required connectors to become available and/or implement some
timeouts.

· Use

§ Send Record Stream Command Requests and/or Execute Remote Command Requests
as desired.

§ Records Stream Command Responses for Open Stream Commands will include the
channel where Advance commands for the opened stream should be sent ([Secure Only]
they will also include the corresponding AES key). Make sure to use these when sending
Advance Stream Requests.

· Shutdown

§ Send a Project Command Request to Close any open projects.

7.1.4.1 Registration Command

The Registration Command is the first message any DTS component must send to the Controller.
Its purpose is to make the component known to the Controller, to request further communication
parameters and to authenticate if the DTS environment is secured.

Request

Outgoing

Target channel "DTS:MIDDLEWARE:CHANNEL"

Payload Class Key "DTS_REGISTER_COMPONENT_REQ_COMMAND"

{
"projectName" : "",
"sessionName" : "",
"authentication" : "",
"component" : {

"componentType" : "",
"category" : "",
"variety" : "",
"connectorName" : "",
"threadCount" : "",
"metadataProducer" : false

}
}

Attribute Value Note

279

DTS Product Manual © 2023 Realworld Systems B.V.

Development

projectName The name of the project this
component will serve

Not applicable for Client
Registration

sessionName The human readable name of
this session

Standard for clients is
"[given_name]@[hostname]"

authentication The authentication package Only required for secured
deployments - content must be in
the format shown in Registration
and Authentication

component Wrapper for the component
description

componentTypeThe type of component being
registered

For clients, this is
"DTS:CLIENT:CONSUMER"

category For clients, this is
"DTS:INTERNAL"

variety Not applicable for Client
Registration

connectorName Not applicable for Client
Registration

threadCount Not applicable for Client
Registration

metadataProducer Not applicable for Client
Registration

Response

Incoming

Target channel: request replyToChannel

Payload Class Key: "DTS_REGISTER_COMPONENT_RESPONSE"

{
"id" : "",
"channel" : "",
"controllerKey" : "",
"componentKey" : "",
"securitySignature" : ""

}

248

280

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Attribute Value Note

id The id the Controller assigns
to the Component

channel The Redis channel the
Controller assigns to the
component

This is the channel that the
Controller will use to send requests
to the component from here on

controllerKey The AES key for the
controller channel
(DTS:MIDDLEWARE:CHAN
NEL) - encrypted using the
component's public key and
Base64 encoded

Only for secured deployments. All
messages sent by the client on the
controller channel will need to be
encrypted using this key

componentKey The AES key for the
component's channel (i.e.
channel) - encrypted using
the component's public key
and Base64 encoded

Only for secured deployments. All
messages sent to the client on its
channel will be encrypted using this
key

securitySignature The RSA signature included
in the request's
authentication package -
encrypted using the
component's public key and
Base64 encoded

Only for secured deployments. The
purpose of returning the security
signature in this way is for the
component to know it is dealing with
an authentic Controller

7.1.4.2 Project Command

Project Commands are perform operations on DTS projects. Clients can use Project Commands
to Open and Close projects.

· The Open Project Command is sent by the Client to the Controller to request access to
resources belonging to a specific DTS project. It also triggers the Controller to initialize producers
and setup support structures for managing and serving requests for that project.

· The Close Project Command is sent by the Client to the Controller to inform it that it no longer
needs a certain project. The Controller will only discard the project resources if no Clients require
them for a set amount of time.

281

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Request

Outgoing

Target channel "DTS:MIDDLEWARE:CHANNEL"

Payload Class Key "DTS_PRJ_COMMAND_REQ"

{
"name" : "",
"projectName" : ""

}

Attribute Value Note

name The name of the command For Clients, either
"DTS_PRJ_OPEN_COMMAND" or
"DTS_PRJ_CLOSE_COMMAND"

projectName The name of the project the
command targets

Response

Incoming

Target channel: request replyToChannel

Payload Class Key: "STRING" or array of "STRING"

Open Project Commands are responded to with an array of strings representing the names of the
connectors the project contains. This does not imply that the connectors are now ready for usage,
simply that they are recognized and are being initialized if they are not yet available. Each
connector's availability is announced to the client by an individual Connector Command, outlined
below.

Close Project Commands are simply responded to with the "DONE" acknowledgment string.

For error responses, the payload will be null and the error details will be included in the response
message's error attribute.

282

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7.1.4.3 Connector Command

Connector Commands are used throughout DTS to activate and deactivate connectors in
components. From a Client's perspective, it will receive Connector Commands to signal the
Activation or Deactivation of connectors targeted by the projects currently open in the Client. It may
also receive Kick Connector Commands to be notified that it no longer has access to a certain
project.

Activation commands will contain the full description of the Connector, including descriptors for all
collections, routines and types involved.

Request

Incoming

Target channel channel assigned to Client with the Registration Command Response -
componentChannel

Payload Class Key "DTS_CONNECTOR_COMMAND"

{
"name" : "",
"projectName" : "",
"connectorEntry" : {

"name" : "",
"type" : "",
"channel" : "",
"replicaCount" : "",
"parametersContainer" : {

"development" : {},
"testing" : {},
"production" : {}

},
"collections" : [

<CollectionResources>
],
"remotes" : [

<RemoteCallResources>
],
"types" : [

<TypeResources>
]

},
"reconnect" : false,
"reason" : ""

}

283

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Attribute Value Note

name The name of the command "ACTIVATE_CONNECTOR",
"DEACTIVATE_CONNECTOR" or
"KICK"

projectName The name of the project that is
the subject of the command

connectorEntry Wrapper for the descriptor of the
connector that is the subject of
the command

Not used for KICK commands

name The name of the connector

type The type code of the connector

channel Channel assigned to the
connector

Not applicable to Client

replicaCount Maximum number of producers Not applicable to Client

parametersContainerWrapper for the connection
parameters to a connector's
data source.

Not applicable to Client

collections The list of collections that the
connector can serve as
CollectionResource objects

These are full descriptions of the
collections served, with fields,
types and constraints (only
present on activation)

remotes The list of remote calls that the
connector can serve as
RemoteCallResource
objects

These describe the details of the
native routines that can be
accessed with full descriptions of
inputs and outputs (only present
on activation

types The list of non-trivial data types
that the connector relies on as
TypeResource objects

These are full descriptions of any
structure types present in any
fields or parameters served by the
connector (only present on
activation)

reconnect Only for KICK commands -
whether or not a reconnect
should be attempted

reason Only for KICK commands - the
reason for being kicked

288

288

288

284

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Response

Outgoing

Target channel Request replyToChannel

Payload Class Key "STRING"

The response the client must provide to a Connector Command Request is the "DONE"

acknowledgment string. If the request generated errors, the response should be null and the error
should be included in the response message's error attribute.

7.1.4.4 Record Stream Command

Record Stream Commands are used to manage and consume DTS record streams. Record
Stream Commands emitted by the Client can Open, Close or Advance a stream.

Request

Outgoing

Target channel "DTS:MIDDLEWARE:CHANNEL" for Open and

Close / the stream producer's channel for Advance
Payload Class Key "DTS_RECORD_REQ_COMMAND"

{
"projectName" : "",
"connectorEntry" : {

"name" : ""
},
"collectionKey" : "",
"operation" : 0,
"filter" : <DTSPredicate>,
"streamKey" : "",
"batchSize" : 0

}

Attribute Value Note

285

DTS Product Manual © 2023 Realworld Systems B.V.

Development

projectName The name of the project
containing the resource

connectorEntry -> nameThe name of the connector
serving the resource

collectionKey The name of the collection
resource

operation The operation to execute (1 -
Open, 3 - Close, 5 - Advance)

filter The DTSPredicate to use for
building the query that
generates the record stream

streamKey The stream's identification key
(not used for Open)

The streamKey is generated by
the stream producers after
opening the stream and is
communicated to the Client in the
response to the Open request.

batchSize The number of records to be
served (not used for Close)

Response

Incoming

Target channel Request replyToChannel

Payload Class Key "DTS_STREAM_RECORD_CONTAINER"

{
"streamId" : "",
"moreToGet" : false,
"channel" : "",
"channelKey" : "",
"records" : [

<StreamRecord>
]

}

Attribute Value Note

239

286

DTS Product Manual © 2023 Realworld Systems B.V.

Development

streamId The key or id of the stream

moreToGet Whether the stream has more
records after these

It is true or false for responses
to Open and Advance Commands
and it is null to signify a
completed Close command

channel The stream producer's channel
to send subsequent Advance
commands to (only for Open
command responses)

channelKey The AES encryption key for
channel

Only for secured deployments

records The list of requested records Will be of the length set in the
request's batchSize attribute or all
that is left in the stream if less than
that.

The format of the returned records
is described by the respective
CollectionResource

 Record Stream Command Responses can be received even w ithout making an explicit request.
This happens whenever a stream times out and is closed.

7.1.4.5 Execute Remote Command

Execute Remote Commands are used to invoke routines. The Client addresses the requests to the
Controller and the responses come from the serving producers.

Request

Outgoing

Target channel "DTS:MIDDLEWARE:CHANNEL"

Payload Class Key "DTS_EXECUTE_REMOTE_COMMAND"

{
"projectName" : "",
"connectorEntry" : {

"name" : ""

288

287

DTS Product Manual © 2023 Realworld Systems B.V.

Development

},
"remoteKey" : "",
"parameters" : {

"payloadMetadata" : {
"payloadClassKey" : "",
"arrayPayload" : false

},
"payloadJSON" : ""

}
}

Attribute Value Note

projectName The name of the project
containing the resource

connectorEntry -> nameThe name of the connector
serving the resource

remoteKey The name of the remote call
resource

parameters A payload container to wrap the
remote call's input parameters

payloadMetadata The metadata for the payload

payloadClassKeyThe type key of the remote's
arguments wrapper class

The TypeDescriptor for this type
key can be found in the
RemoteCallDescriptor
corresponding to the remote call.

arrayPayload Always false as the arguments
are wrapped in a single object

payloadJSON The JSON representing the
arguments wrapper object in the
format referenced by
payloadClassKey

The payload json is actually
wrapped in a string. This means
that all " (double quote) characters
need to be escaped.

Response

Incoming

Target channel Request replyToChannel

288

288

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Payload Class Key The type key of the remote call's results wrapper
(described in the RemoteCallDescriptor) or
"DTS_STREAM_RECORD_CONTAINER"

If it is a regular routine, the response will directly contain the outputs of the routine, wrapped in an
object with each output as a named attribute.

If the routine returns a stream, the response will be the same a Record Stream Command
Response, containing the details of the resulting stream.

7.2 Producer

Custom producer development is not yet ready for public access - we're still working on our APIs.

However, if you have a particular data source that you need DTS to access, please contact us for a
solution.

7.3 Project Artifacts

DTS stores a number of artifacts used to describe structures used in its projects in its internal
repository (Mongo). When developing extensions to DTS or tracing certain issues during
administration, it is useful to have a reference on the formats and purposes of these artifacts.

DTS uses the DTS database in its internal Mongo deployment to store the following artifact
collections:

· Foundation Artifacts

§ CONNECTOR_CATEGORY

§ CONNECTOR_TYPE

§ NOTIFICATION_SENDER

§ WEBSERVICE_DEPLOYER

· Design Artifacts

§ PROJECT_WIP

288

284

290

291

293

294

295

289

DTS Product Manual © 2023 Realworld Systems B.V.

Development

§ PROJECT_RESOURCE

§ PROJECT_OPERATION

§ CONNECTOR

§ COLLECTION_RESOURCE

§ COLLECTION_DETAILS

§ REMOTE_CALL_RESOURCE

§ REMOTE_CALL_DETAILS

§ AGGREGATE

§ WEBSERVICE

· Runtime Artifacts

§ PROJECT

§ PROJECT_STATUS

§ PRODUCER_STATUS

§ CONSUMER_STATUS

Certain substructures are used in multiple collections and are detailed separately:

§ NotificationsConfig

§ NotificationTarget

§ AttributeDescriptor

§ ConstraintDefinition

§ TypeResource

§ AggregateSource

§ AggregateRelationship

§ WebserviceResource

 Some of these structures or their substructures are also passed w ithin commands between DTS
components.

296

297

298

300

301

302

303

306

307

308

309

310

311

313

313

314

315

316

316

317

318

290

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7.3.1 CONNECTOR_CATEGORY

The CONNECTOR_CATEGORY collection holds the base (built-in) definitions for DTS connectors.
Its content is predefined and maintained by the DTS Core and should not be altered.

{
"category" : "",
"imageName" : "",
"bladeJar" : "",
"build" : "",
"requiredJars" : [],
"environment" : {},
"volumes" : {}

}

Attribute Value Note

category The category of the connector type,
also the type of data source. Must
be one of the supported data
source types.

e.g.: "Oracle"

The category is used to identify base
connection parameters and to find
specific connector implementation
libraries.

imageName The name of the Docker image to
use as a base for producers of this
connector type.

e.g.: "registry/dts-
producer-2021.1"

Should be the tag by which the image
is known in the Docker engine.

bladeJar The path of the main jar for this this
connector type's implementation
library (blade) relative to the blades
directory

e.g.: "Oracle/dts-blade-
oracle-2021.1.jar"

If the blade is contained in the Docker
image, this is omitted (e.g. the
Smallworld connector types).

requiredJars A list of all the jars that bladeJar
requires as paths relative to the
blades directory.

e.g.: ["Oracle/dts-blade-
oracle-2021.1.jar",
"Oracle/ojdbc8-
19.3.0.0.jar",

291

DTS Product Manual © 2023 Realworld Systems B.V.

Development

"Oracle/orai18n-
19.3.0.0.jar",
"Oracle/jdbc"]

environment A map of environment variables to
pass into the producer's Docker
container as key-value pairs.

e.g: {"DTS_DEBUG_LOGGING" :
"true", "SOMETHING_ELSE"
: "1234"}

volumes A map of volumes between the
Docker host and the producer
container as key-value pairs where
the key is the host directory and the
value is the container directory.

e.g.: {"/dts/stuff" :
"/usr/local/stuff"}

 Mongo does not accept the period
(.) character as a map key and it
cannot be escaped. As such, DTS
does not support mapping directories
whose path on the Docker host
contains a period (.) character.

7.3.2 CONNECTOR_TYPE

The CONNECTOR_TYPE collection holds all connector type definitions for a DTS deployment.
This is where the Type choices when adding a connector in the WebApp come from. Connector
Types can be defined using the Connector Types dialog or by directly interacting with
documents in the collection.

{
"category" : "",
"variety" : "",
"type" : "",
"imageName" : "",
"bladeJar" : "",
"build" : "",
"requiredJars" : [],
"environment" : {},
"volumes" : {},
"parameters" : []

}

Attribute Value Note

44

104

292

DTS Product Manual © 2023 Realworld Systems B.V.

Development

category The category of the connector type,
also the type of data source. Must
be one of the supported data
source types.

e.g.: "Oracle"

The category is used to identify base
connection parameters and to find
specific connector implementation
libraries.

variety The name of the variation of
category , if any.

e.g.: "PDB"

type The name of the connector type as
it will appear in the WebApp.

e.g.: "Oracle:PDB"

Convention is to use category:variety

imageName The name of the Docker image to
use as a base for producers of this
connector type.

e.g.: "registry/dts-
producer-2021.1"

Should be the tag by which the image
is known in the Docker engine.

bladeJar The path of the main jar for this this
connector type's implementation
library (blade) relative to the blades
directory

e.g.: "Oracle/dts-blade-
oracle-2021.1.jar"

If the blade is contained in the Docker
image, this is omitted (e.g. the
Smallworld connector types).

requiredJars A list of all the jars that bladeJar
requires as paths relative to the
blades directory.

e.g.: ["Oracle/dts-blade-
oracle-2021.1.jar",
"Oracle/ojdbc8-
19.3.0.0.jar",
"Oracle/orai18n-
19.3.0.0.jar",
"Oracle/jdbc"]

environment A map of environment variables to
pass into the producer's Docker
container as key-value pairs.

293

DTS Product Manual © 2023 Realworld Systems B.V.

Development

e.g: {"DTS_DEBUG_LOGGING" :
"true", "SOMETHING_ELSE"
: "1234"}

volumes A map of volumes between the
Docker host and the producer
container as key-value pairs where
the key is the host directory and the
value is the container directory.

e.g.: {"/dts/stuff" :
"/usr/local/stuff"}

 Mongo does not accept the period
(.) character as a map key and it
cannot be escaped. As such, DTS
does not support mapping directories
whose path on the Docker host
contains a period (.) character.

 The category, imageName, bladeJar, requiredJars, environment and volumes attributes are
directly inherited from the referenced CONNECTOR_CATEGORY .

 The blades directory in a producer container is by default /usr/local/blades, but can be customized
by setting the DTS_BLADES_PATH environment variable.

7.3.3 NOTIFICATION_SENDER

The NOTIFICATION_SENDER collection holds the SMTP parameters of all configured accounts
that will be used for sending DTS notifications. Notification senders can be defined using the
Notification Senders dialog in the Web UI.

{
 "address" : "",
 "host" : "",
 "port" : 0,
 "username" : "",
 "password" : "",
 "encryption" : ""
}

Attribute Value Note

address The full email address of the
sender.

This value will be used to identify the
sender when configuring a project's
notifications.

host The email server host name.

e.g.: "smtp.gmail.com"

290

109

294

DTS Product Manual © 2023 Realworld Systems B.V.

Development

port The email server port.

e.g.: 587

username The SMTP username for the email
account.

password The SMTP password for the email
account.

encryption The type of encryption to be used.

"none" / "SSL" / "STARTTLS"

7.3.4 WEBSERVICE_DEPLOYER

The WEBSERVICE_DEPLOYER collection stores definitions for DTS WebService deployment
methods. The deployers are created and edited using the Webservice Deployers dialog in the
Web UI.

{
"name" : "",
"type" : "",
"hostname" : "",
"port" : "",
"hostUsername" : "",
"hostPassword" : "",
"copyPath" : "",
"appservUsername" : "",
"appservPassword" : ""

}

Attribute Value Note

name The name given to the deployer. It is the unique identifier used for the
deployer throughout DTS.

type The type of deployment.

"SCP" / "Samba" /
"JBossCLI" / "TomcatHTTP"
/ "Weblogic" /
"Websphere" / "Local"

Each deployment type has a specific
method and requires a specific
subset of the other attributes.

97

295

DTS Product Manual © 2023 Realworld Systems B.V.

Development

hostname The host name for the deployment
target (usually the Application
Server).

Required by all deployment types,
except "Local"

port The port used for invoking the
Application Server's deployment
API.

Required only for "JBossCLI" and
"TomcatHTTP"

hostUsername The username to connect to the
deployment target host (usually the
Application Server).

Required for "SCP", "Samba",
"TomcatHTTP", "Weblogic",
"Websphere"

hostPassword The password for hostUsername Same as hostUsername

copyPath The path to copy the DTS WARs to
on hostname.

Required for all deployment types,
except "JBossCLI"

appservUsername An admin user name for the
Application Server.

Required for "JBossCLI",
"TomcatHTTP", "Weblogic",
"Websphere"

appservPassword The password for
appservUsername

Same as appservUsername

 The precise methods each deployer type uses are documented in the Webservice Deployers
section.

7.3.5 PROJECT_WIP

The PROJECT_WIP collection holds stubs for all DTS projects in design phase. Published projects
retain their design stub as well, to be used for future editing.

{
"_id" : "",
"name" : "",
"createdAt" : 1970-01-01 00:00:00.000Z,
"version" : 0,
"wip" : 0,
"notifications" : []

}

97

296

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Attribute Value Note

_id A unique identifier for the design
project.

Artifacts belonging to this project
stored in other collections will use
this id to reference the project.

name The given name of the project

createdAt The time when the project was
created

version The major version of the project Increments after the project is
published

wip The minor (current design) version
of the project.

Increments when changes are made
to the design project and resets after
the project is published.

notifications A list of notification recipients for
this project, in the form of
NotificationsConfigs

7.3.6 PROJECT_RESOURCE

The PROJECT_RESOURCE collection holds references to all resources currently enabled in
existing design projects (PROJECT_WIP). Enabling/disabling a collection or routine in the
WebApp directly adds/removes entries from this collection.

{
"_id" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : "",
"type" : "",
"fields" : []

}

Attribute Value Note

_id A unique identifier for the project
resource.

nativeIdentifier The full native name of the resource

313

295

297

DTS Product Manual © 2023 Realworld Systems B.V.

Development

projectId Reference to the design project
(PROJECT_WIP entry) this
resource belongs to.

connectorId Reference to the connector
(CONNECTOR entry) this
resource is accessed through.

type The type of resource "collection" (collection, table,
view, etc.)

"api" (function, method, procedure,
etc.)

fields A list containing the nativeIdentifiers
of all the fields in the resource that
are included in the Project.

Only for "collection" resources.

7.3.7 PROJECT_OPERATION

The PROJECT_OPERATION collection contains a log of all operations performed on DTS projects
in the form of the request headers and the resolution.

{
"_id" : "",
"key" : "",
"projectName" : "",
"payload" : {

"payloadRecord" : {},
"payloadMetadata" : {

"payloadClassKey" : "",
"arrayPayload" : false

}
},
"status" : "",
"createdAt" : 1970-01-01 00:00:00.000Z,
"completedAt" : 1970-01-01 00:00:00.000Z

}

Attribute Value Note

_id A unique identifier for the project
operation.

295

298

298

DTS Product Manual © 2023 Realworld Systems B.V.

Development

key The _id of the request message for
this operation.

Also the _correlationId of the
response.

payload An abridged version of the request
message's payload

payloadRecord An abridged version of the actual
request command (indentification
info only)

payloadMetadataThe metadata for the request
payload

payloadClassKeyThe class key for the request
command

Identifies the operation command

arrayPayload Whether or not the payload was an
array

False for all project operations

status The resolution status of the
command

createdAt The timestamp of the request

completedAt The timestamp of the response

7.3.8 CONNECTOR

The CONNECTOR collection holds references to all connectors defined for current design projects
(PROJECT_WIP).

{
"_id" : "",
"name" : "",
"type" : "",
"projectId" : "",
"createdAt" : 1970-01-01 00:00:00.000Z,
"parametersContainer" : {

"development" : {},
"testing" : {},
"production" : {}

}
}

295

299

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Attribute Value Note

_id A unique identifier for the connector.

name The full native name of the resource

type The type of connector. Must match
an entry from
CONNECTOR_TYPE .

e.g: "Oracle:PDB"

projectId Reference to the design project
(PROJECT_WIP entry) this
connector belongs to.

createdAt The time when the connector was
created

parametersContainerSets of connection parameters for
the connector (credentials, target
schemas, etc.)

e.g.: { "username" :
"dtstest", "password" :
"test",
"connectionString" :
"jdbc:oracle:thin:@172.16
.10.212:1521/DTSTESTPDB",
"schemas" :
"dtstest,dtsdemo" }

Has 3 separate sections for the types
of deployment.

Published Project Usage

Objects of the CONNETOR form will also be used to describe connectors in published projects
(PROJECT). When employed in this way, they will also include the following attributes:

Attribute Value Note

collections The list of all collection resources
from this connector that are
included in the published project, in
the published form of
COLLECTION_DETAILS .

The data for these items is extracted
by joining design artifacts from
PROJECT_RESOURCE with
artifacts from
COLLECTION_DETAILS .

291

295

308

301

296

301

300

DTS Product Manual © 2023 Realworld Systems B.V.

Development

remotes The list of all remote call resources
from this connector that are
included in the published project, in
the form of
REMOTE_CALL_DETAILS .

The data for these items is extracted
by joining design artifacts from
PROJECT_RESOURCE with
artifacts from
REMOTE_CALL_DETAILS .

7.3.9 COLLECTION_RESOURCE

The COLLECTION_RESOURCE collection holds references to all collections (tables, views, etc.)
identified by the connectors of existing design projects.

{
"_id" : "",
"name" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : ""

}

Attribute Value Note

_id A unique identifier for the collection
resource.

name The given name for the collection
resource

By default, it is the simple name of
the datasource collection

nativeIdentifier The full native name of the
collection

Generally of the form
<container>.<name>

e.g.: "public.employees"

projectId Reference to the design project
(PROJECT_WIP entry) this
collection belongs to.

connectorId Reference to the connector
(CONNECTOR entry) this
collection is accessed through.

303

296

303

295

298

301

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7.3.10 COLLECTION_DETAILS

The COLLECTION_DETAILS collection holds the structural details of all collections that are
enabled in current design projects or have otherwise been requested.

 A COLLECTION_DETAILS entry always has a corresponding COLLECTION_RESOURCE entry and
their name, nativeIdentifier, projectId and connectorId attributes always match.

{
"_id" : "",
"name" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : "",
"fields" : [],
"constraints" : []

}

Attribute Value Note

_id A unique identifier for the collection
resource.

name The given name for the collection
resource

By default, it is the simple name of
the datasource collection

nativeIdentifier The full native name of the
collection

Generally of the form
<container>.<name>

e.g.: "public.employees"

projectId Reference to the design project
(PROJECT_WIP entry) this
collection belongs to.

connectorId Reference to the connector
(CONNECTOR entry) this
collection is accessed through.

fields A list of all the fields available on the
collection in the
AttributeDescriptor format.

constraints A list of all the PK and FK
constraints on the collection in the
ConstraintDefinition format

295

298

314

315

302

DTS Product Manual © 2023 Realworld Systems B.V.

Development

predicate A DTSPredicate that defines the
fundamental filter applied to this
collection

Only records that match the filter will
be allowed through the system. If the
record request contains a query, it
will be compounded (using AND) with
the fundamental filter defined here.

Published Project Usage

Objects of the COLLECTION_DETAILS form will also be used to describe collections in the
connectors of published projects.

7.3.11 REMOTE_CALL_RESOURCE

The REMOTE_CALL_RESOURCE collection holds references to all routines (function, procedures,
methods, etc.) identified by the connectors of existing design projects.

{
"_id" : "",
"name" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : ""

}

Attribute Value Note

_id A unique identifier for the remote
call resource.

name The given name for the remote call
resource

By default, it is the simple name of
the routine

nativeIdentifier The full native name of the routine Generally of the form
<container>.<name>

e.g.:
"public.calculate_impact"

projectId Reference to the design project
(PROJECT_WIP entry) this
routine belongs to.

239

295

303

DTS Product Manual © 2023 Realworld Systems B.V.

Development

connectorId Reference to the connector
(CONNECTOR entry) this
routine is accessed through.

7.3.12 REMOTE_CALL_DETAILS

The REMOTE_CALL_DETAILS collection holds the structural details of all routines that are enabled
in current design projects or have otherwise been requested.

 A REMOTE_CALL_DETAILS entry always has a corresponding REMOTE_CALL_RESOURCE entry
and their name, nativeIdentifier, projectId and connectorId attributes always match.

{
"_id" : "",
"name" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : "",
"inTypeResource" : {},
"outTypeResource" : {},
"streamy" : false

}

Attribute Value Note

_id A unique identifier for the remote
call resource.

name The given name for the remote call
resource

By default, it is the simple name of
the routine

nativeIdentifier The full native name of the routine Generally of the form
<container>.<name>

e.g.:
"public.calculate_impact"

projectId Reference to the design project
(PROJECT_WIP entry) this
routine belongs to.

connectorId Reference to the connector
(CONNECTOR entry) this
routine is accessed through.

298

295

298

304

DTS Product Manual © 2023 Realworld Systems B.V.

Development

inTypeResource A descriptor for the routine's inputs
(arguments) in the form of a
TypeResource

DTS models routines so that their
arguments and results are wrapped
in structured objects (each argument
and result being an attribute in the
respective wrapper). These are the
TypeResources that describe those
models.

outTypeResource A descriptor for the routine's
outputs (results) in the form of a
TypeResource

streamy A flag showing if the remote call
returns a stream or not.

7.3.13 TOPIC_RESOURCE

The TOPIC_RESOURCE collection holds references to all topics identified by the connectors of
existing design projects.

{
"_id" : "",
"name" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : ""

}

Attribute Value Note

_id A unique identifier for the topic
resource.

name The given name for the topic
resource

By default, it is the same as the
nativeIdentifier

nativeIdentifier The full native name of the topic

projectId Reference to the design project
(PROJECT_WIP entry) this
collection belongs to.

connectorId Reference to the connector
(CONNECTOR entry) this
collection is accessed through.

316

316

295

298

305

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7.3.14 TOPIC_DETAILS

The TOPIC_DETAILS collection holds the structural details of all topics that are enabled in current
design projects or have otherwise been requested.

 A TOPIC_DETAILS entry always has a corresponding TOPIC_RESOURCE entry and their name,
nativeIdentifier, projectId and connectorId attributes always match.

{
"_id" : "",
"name" : "",
"nativeIdentifier" : "",
"projectId" : "",
"connectorId" : "",
"partitions" : [],
"keyType" : "",
"messageType" : "",
"readEnabled" : false,
"writeEnabled" : false,
"properties" : {},
"recordTypeDescriptor" : {}

}

Attribute Value Note

_id A unique identifier for the topic
resource.

name The given name for the topic
resource

By default, it is the same as the
nativeIdentifier

nativeIdentifier The full native name of the topic

projectId Reference to the design project
(PROJECT_WIP entry) this
collection belongs to.

connectorId Reference to the connector
(CONNECTOR entry) this
collection is accessed through.

partitions A list of the partition ids in the Topic
(int array)

keyType The selected (de)serialization type
for the topic's keys

295

298

306

DTS Product Manual © 2023 Realworld Systems B.V.

Development

messageType The selected (de)serialization type
for the topic's messages

readEnabled Whether reading from the Topic via
DTS is enabled

writeEnabled Whether writing to the Topic via
DTS is enabled

properties A map of properties specified for
the Topic

recordTypeDescriptorA full TypeResource describing
the records that will be streamed for
the Topic

Published Project Usage

Objects of the TOPIC_DETAILS form will also be used to describe collections in the connectors of
published projects.

7.3.15 AGGREGATE

The AGGREGATE collection holds the Aggregate definitions for DTS Projects. They can be created
in the WebApp, using the Aggregates Page .

 For more information on this functionality, please see Aggregation .

{
"name" : "",
"mainSourceIdentifier" : "",
"mainSourceName" : "",
"mainSourceConnector" : "",
"projectId" : "",
"sources" : [],
"relationships" : []

}

Attribute Value Note

name The given name for the collection
resource

By default, it is the simple name of
the datasource collection

316

59

242

307

DTS Product Manual © 2023 Realworld Systems B.V.

Development

mainSourceIdentifierThe full native name of the main
source

Generally of the form
<container>.<name>

e.g.: "public.employees"

mainSourceName The DTS name for the main source

mainSourceConnectorThe name of the connector
definition where the main source is
from

projectId Reference to the design project
(PROJECT_WIP entry) this
collection belongs to.

sources The list of sources included in the
Aggregate, in the form of
AggregateSources

relationships The list of relationships between the
Aggregate's sources, in the form of
AggregateRelationships

7.3.16 WEBSERVICE

The WEBSERVICE collection holds definitions for webservices designed to serve DTS projects.
The reflect the work in the Webservices section of the Web UI.

{
"webserviceName" : "",
"mode" : "",
"projectId" : "",
"connectors" : []

}

Attribute Value Note

webserviceName The given name for the webservice.

mode The type of webservice this models.

"REST" / "SOAP"

295

316

317

70

308

DTS Product Manual © 2023 Realworld Systems B.V.

Development

projectId The id of the project this webservice
definition belongs to.

connectors The list of resources included in the
webservice, in the form of
WebserviceResources

7.3.17 PROJECT

The PROJECT collection houses all published (i.e. usable) projects. While design artifact are
spread over multiple collections, each PROJECT entry brings together all the artifacts relevant to a
given project in a single document.

{
"_id" : "",
"wid" : "",
"version" : 0,
"wip" : 0,
"name" : "",
"connectors" : [],
"aggregates" : [],
"webservices" : [],
"notifications" : []

}

Attribute Value Note

_id A unique identifier for the published
project

Not the same as the design project
_id

wid The _id of the corresponding design
project (PROJECT_WIP)

version The major version of the published
project

The values of version and wip the
design project was on before
publishing.

wip The minor version of the published
project

name The name of the published project The same as the name of the design
project or a variation denoting a
Webservice-specific publishing (*).

318

295

309

DTS Product Manual © 2023 Realworld Systems B.V.

Development

connectors The list of connectors in the project
in the published form of
CONNECTOR

aggregates The list of aggregates defined in the
project, in the published form of
AGGREGATE

webservices The list of webservices defined in
the project, in the published form of
WEBSERVICE

notifications The list of notification routes defined
in the project, in the published form
of NOTIFICATIONS

 (*) Each time a Webservice WAR is generated, a snapshot of the Project i t belongs to is saved in
the PROJECT collection.
 This is due to the fact that the generated WAR contains hardcoded resources referencing project artifacts. These can
change in the base PROJECT entry when a new version is published, so a snapshot is kept so that the Webservice
does risk becoming inoperative.

7.3.18 PROJECT_STATUS

The PROJECT_STATUS collection houses real-time information on the operating status of
published projects (PROJECT).

{
"projectName" : "",
"active" : false,
"started" : "",
"version" : 0,
"totalCalls" : 0,
"totalStreams" : 0,
"connectorNames" : []

}

Attribute Value Note

projectName The name of the published project
this status references

298

306

307

313

308

310

DTS Product Manual © 2023 Realworld Systems B.V.

Development

active Whether or not the project is
currently active

A project becomes active when a
consumer asks for it or it is manually
activated and it becomes inactive
after a certain time with no
consumers or if it is manually
stopped.

started The time at which the project was
last activated

version The version of the project that is
currently activated

This may differ from the published
project version if the project has been
active while a new version was
published.

totalCalls The total number of calls the project
has served.

totalStreams The total number of streams the
project has served.

connectorNames A list of the names of all the
connectors in this project for the
active version.

This list is used in the Dashboard to
keep track of producers for
connectors that have possibly been
removed or renamed in versions of
the project newer than the active one.

 Together w ith PRODUCER_STATUS and CONSUMER_STATUS , this collection is what feeds
real-time information in the WebApp's Dashboard.

7.3.19 PRODUCER_STATUS

The PRODUCER_STATUS collection houses real-time information on the operating status of
currently running producers.

{
"componentId" : "",
"projectName" : "",
"connectorName" : "",
"sessionName" : false,
"started" : "",
"status" : 0,
"isAggregator" : false,
"activeCalls" : "",

310 311

311

DTS Product Manual © 2023 Realworld Systems B.V.

Development

"activeStreams" : "",
"totalCalls" : 0,
"totalStreams" : 0

}

Attribute Value Note

componentId The component identifier assigned
to this producer

projectName The name of the published project
this producer serves

connectorName The name of the connector the
producer belongs to.

sessionName The self-generated name of the
producer's session

Typically, this is the name of the
producer's Docker container.

started The time at which the producer was
started

status The current status of the producer

isAggregator A flag that says if this status entry is
for a connector producer, or for an
aggregator.

activeCalls The number of remote calls
currently being served

activeStreams The number of streams currently
being served

totalCalls The total number of calls the
producer has served.

totalStreams The total number of streams the
producer has served.

7.3.20 CONSUMER_STATUS

The CONSUMER_STATUS collection houses real-time information on the operating status of
currently running consumers (clients).

312

DTS Product Manual © 2023 Realworld Systems B.V.

Development

{
"componentId" : "",
"projectId" : "",
"sessionName" : false,
"started" : "",
"status" : 0,
"isAggregator" : false,
"activeCalls" : "",
"activeStreams" : "",
"totalCalls" : 0,
"totalStreams" : 0

}

Attribute Value Note

_id A unique identifier for this status
entry

componentId The component identifier assigned
to this consumer

projectName The name of the published project
this consumer targets

sessionName The self-generated name of the
consumer's session

Typically, this is of the form
<given_name>@<hostname>

started The time at which the consumer
was registered

status The current status of the consumer

isAggregator A flag that says if this status entry is
for a regular client, or for an
aggregator's client.

activeCalls The number of remote calls
currently being accessed

activeStreams The number of streams currently
being accessed

totalCalls The total number of calls the
consumer has accessed

totalStreams The total number of streams the
consumer has accesssed

313

DTS Product Manual © 2023 Realworld Systems B.V.

Development

7.3.21 NotificationConfig

NotificationConfigs model notification configurations for registered projects. They are the direct
result of the Project Notifications page in the Web UI.

{
"senderId" : "",
"projectName" : "",
"targets" : []

}

Attribute Value Note

senderId The identifier for the notification
sender account.

This is the address field of the
respective entry in
NOTIFICATION_SENDER .

projectName The name of the project these
notification settings are for.

targets A list of recipients of notifications for
this project, in the form of
NotificationTargets .

7.3.22 NotificationTarget

NotificationTargets model recipients for project notifications and their settings.

{
"address" : "",
"componentFailureEnabled" : false,
"agentFailureEnabled" : false,
"licenceLimitReachedEnabled" : false

}

Attribute Value Note

address The email address of the
notification recipient.

293

313

314

DTS Product Manual © 2023 Realworld Systems B.V.

Development

componentFailureEnabledWhether the recipient will receive
notifications when a component
(producer or aggregator) fails.

agentFailureEnabledWhether the recipient will receive
notifications when a the DTS agent
fails.

licenceLimitReachedEnabledWhether the recipient will receive
notifications when the limit of
concurrent calls or streams set by
the licence is reached.

7.3.23 AttributeDescriptor

AttributeDescriptors model the details of resource attributes - either collection fields (table
columns), routine arguments/results or structured type members.

{
"nativeIdentifier" : "",
"name" : "",
"nativeTypeIdentifier" : "",
"type" : "",
"array" : false,
"extra" : {}

}

Attribute Value Note

nativeIdentifier The full native name of the attribute

name The given name for the attribute By default, it is the same as the
nativeIdentifier

nativeTypeIdentifierThe native data type of the attribute

type The DTS type of the attribute

array Whether or not the data type is an
array or a list

extra A map of extra information only
relevant for certain attributes of

315

DTS Product Manual © 2023 Realworld Systems B.V.

Development

resources from certain connectors

7.3.24 ConstraintDefinition

ConstraintDefinitions model the details of table constraints defined in a data source.

 Only Primary Key and Foreign Key constraints are stored as ConstraintDefinitions.

 ConstraintDefinitions only ex ist for collection resources in relational databases.

 Non-SQL datasources may be assigned ConstraintDefinitions w ith sl ightly different interpretations.
The table below shows the interpretation for Smallworld in the Note column.

{
"constraintName" : "",
"constraintType" : "",
"tableName" : "",
"columnNames" : [],
"referencedTableName" : "",
"referencedColumnNames" : []

}

Attribute Value Note

constraintName The name of the constraint For Smallworld, this is a generated
PK name or the name of a join field

constraintType The type of constraint
("DTS_PRIMARY_KEY" or
"DTS_FOREIGN_KEY")

tableName The name of the collection/table the
constraint is defined on

For Smallworld, the collection with
the join field being modeled, or the
intermediate table that governs the
join

columnNames The list of columns the constraint is
defined on

For Smallworld, the list of underlying
physical fields on the tableName side
of the join

referencedTableNameThe table that the constraint
references

For Smallworld, the collection on the
opposite side of the join

316

DTS Product Manual © 2023 Realworld Systems B.V.

Development

referencedColumnNamesThe list of columns that are
referenced by the constraint (the
order corresponds to that of
columnNames)

For Smallworld, the list of underlying
physical fields on the
referencedTableName side of the join

7.3.25 TypeResource

TypeResources model the details of a structured entity. Generally used to describe the structure of
complex types or wrapper entities.

{
"name" : "",
"type" : "",
"attributes" : []

}

Attribute Value Note

name The name of the entity or type

type The type of the entity For complex types, same as name

attributes The list of attributes the type or
entity has - in AttributeDescriptor
format

7.3.26 AggregateSource

AggregateSources model data resources used in Aggregate definitions.

 For more information on this functionality, please see Aggregation .

{
"name" : "",
"nativeIdentifier" : "",
"connectorId" : "",
"connectorName" : "",
"type" : "",
"fields" : {},
"predicate" : {}

314

242

317

DTS Product Manual © 2023 Realworld Systems B.V.

Development

}

Attribute Value Note

name The DTS name of the resource.

nativeIdentifier The native identifier of the resource.

connectorId The _id of the connector the
resource belongs to.

connectorName The name of the connector the
resource belongs to.

type The type of resource.

"COLLECTION" / "ROUTINE"

fields A map of the attributes from the
resource that are included in the
Aggregate. The keys represent the
attributes' nativeIdentifiers, while the
values represent the names by
which they are known inside the
aggregate.

predicate The DTSPredicate that defines
the universal filter used on this
resource, if any.

7.3.27 AggregateRelationship

AggregateRelationships model relationships between Aggregate sources. Each relationship is
always between two sources and is asymmetrical - one source is the parent and one is the child.

 For more information on this functionality, please see Aggregation .

{
"parentConnectorId" : "",
"parentIdentifier" : "",
"childConnectorId" : "",
"childIdentifier" : "",
"predicate" : {}

}

239

242

318

DTS Product Manual © 2023 Realworld Systems B.V.

Development

Attribute Value Note

parentConnectorIdThe _id of the connector the parent
source belongs to.

parentIdentifier The native identifier of the parent
source.

childConnectorId The _id of the connector the child
source belongs to.

childIdentifier The native identifier of the child
source.

predicate The DTSPredicate that models
the relationship between the parent
and the child.

The predicate will always have
operatorName = "eq", the
attributeName represents the child's
Query Parameter and the
attributeValue represents the parent's
Attribute.

7.3.28 WebserviceResource

WebserviceResources model configurations for DTS resources as it pertains to their inclusion in
designed Webservices.

{
"connector" : "",
"remoteName" : "",
"name" : "",
"streamPathPrefix" : "",
"methsMetadata" : {}

}

Attribute Value Note

connector The _id of the connector the
resource belongs to.

remoteName The native identifier of the resource.

name The custom name given to the
resource inside the webservice, if

Only applies to remote call
resources.

239

319

DTS Product Manual © 2023 Realworld Systems B.V.

Development

any. For REST webservices it is reflected
in the operation's URL, while for
SOAP webservices it becomes the
operation's name.

streamPathPrefix The URL prefix that will be used for
streaming operations on the
resource.

Only applies to streaming resources
in REST webservices.

methsMetadata An map of the settings for
streaming operations on this
resource.

Only applies to streaming resources.

Streaming Operation Settings

The methsMetadata attribute contains a map whose keys represent the identifiers for the

possible streaming operations on a resource. The presence of an item implies its inclusion in the
Webservice.

open_stream_w_inline Open a stream with URL query parameters (REST only)

Has a fields attribute which lists all fields which will be available as
query parameters in the resulting GET operation.

open_stream_w_predicate Open a stream using a predicate (SOAP & REST).

When used in a REST webservice, it results in a POST operation.

get_stream_records Get records from a stream (SOAP & REST).

Mandatory if any Open Stream operation is enabled.

get_stream_records_w_inline Get a set of records with URL query parameters (REST only)

Has a fields attribute which lists all fields which will be available as
query parameters in the resulting GET operation.

get_stream_records_w_predic
ate

Get a set of records using a predicate (SOAP & REST).

When used in a REST webservice, it results in a POST operation.

get_stream_record_w_key Get a single record using a unique field (SOAP & REST).

Has a fields attribute which will contain a single element
representing the chosen field's name.

All entries can have a name attribute which sets a custom operation name (SOAP) or a custom
URL suffix (REST).

 For more information on Webservice streaming operations, please see Webservices - Access .195

Known Limitations

322

DTS Product Manual © 2023 Realworld Systems B.V.

Known Lim itations

8 Known Limitations

3D Geometries While simple 3D geometries are supported throughout DTS,
approximations for complex curves (arcs, splines and any combination
thereof) are only available in 2D.

Aggregate Queries Aggregates can only be queried relative to the fields of the Main Source.
Fields from other sources can only be delivered or used in static filters and
relationships.

Collections on
Upgrade

When upgrading from an older version of DTS, you may notice some
collections included in various Projects have all their fields become
excluded. This only happens when there was no manual interaction with the
fields list of the collection and all fields are enabled by default. The simple
workaround is to exclude and re-include the collection in the Project, which
will bring back all the fields.

Other Upgrade
Considerations

When upgrading from an older version of DTS, for the safest possible
transition, all Projects should be republished and all Webservices should be
redeployed.

Indiv idual Connector
Limitations

Each individual Connector may have its own set of limitations. They are
listed in each Connector's Limitations section.

118

Licenses

324

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

9 Licenses

This section concentrates all licensing information regarding the DTS product and its
dependencies.

· 3rd Party Licenses

9.1 3rd Party Licenses

The DTS distribution packages can include any of the following 3rd Party software products and
libraries, each under its respective license:

3rd Party
Software

Version Owner Function License

asm 5.2 OW2 Bytecode Library BSD 3-clause

camel 2.25.0 Apache Software
Foundation

Enterprise Integration Apache 2.0

commons 1.15 Apache Software
Foundation

General Purpose
Library

Apache 2.0

cxf 3.3.5 Apache Software
Foundation

Services Framework Apache 2.0

docker-java 3.2.7 Marcus Linke Docker Interop Library Apache 2.0

gson 2.8.6 Google JSON Library Apache 2.0

jackson 2.10.1 FasterXML JSON Library Apache 2.0

javax.mail 1.6.2 Oracle Email Library CDDL 1.1

jaxws-api 2.3.1 Oracle Webservice
Annotations

CDDL 1.1

jcifs 2.1.6 JCifs Samba Library LGPL 2.1

jedis 3.2.0 Redis Labs Redis Client MIT

jsch 0.1.55 JCraft SSH Library BSD 3-clause

324

329

325

325

325

325

325

325

330

330

341

348

329

325

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

kubernetes-client 4.13.0 Fabric8 Kubernetes Java Client Apache 2.0

mongo-java-driver 3.12.1 Mongo DB MongoDB Client Apache 2.0

mssql-jdbc 8.2.2.jre8 Microsoft JDBC Driver MIT

mysql-connector-
java

8.0.30 Oracle Corporation JDBC Driver GPL 2.0

ngdbc 2.9.12 SAP SAP HANA Driver SAP DLA

ojdbc 19.3.0.0 Oracle Corporation JDBC Driver OTNLA

postgis-jdbc 2.5.0 OSGeo JDBC Driver Extension LGPL 2.1

postgresql 42.2.17 PostgreSQL JDBC Driver BSD 2-clause

reactive-streams 1.0.3 CC0 1.0

spring 5.2.3.RELEA
SE

Pivotal Software Web Framework Apache 2.0

DTS uses each of the above software products in accordance with its license and, upon
distribution, extends the obligations regarding their respective assets specified in each license to its
users.

9.1.1 Apache 2.0

Apache License

Version 2.0, January 2004

http: //www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND
DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

325

325

348

336

354

349

341

329

330

325

http://www.apache.org/licenses/

326

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an
example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent to the Licensor or
its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but excluding communication that
is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or Object form.

327

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer
the Work, where such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for that Work shall terminate as of the date
such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium,
with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files;
and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

328

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the
Work by You to the Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or
product names of the Licensor, except as required for reasonable and customary use in describing
the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties
or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using
or redistributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or losses),
even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a
fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act only on Your own
behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims

329

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

9.1.2 BSD 2-clause

https://opensource.org/licenses/BSD-2-Clause

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

9.1.3 BSD 3-clause

https://opensource.org/licenses/BSD-3-Clause

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause

330

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

9.1.4 CCO 1.0

https://creativecommons.org/publicdomain/zero/1.0/

9.1.5 CDDL 1.1

COMMON DEVELOPMENT AND DISTRIBUTION LICENSE (CDDL)

https://spdx.org/licenses/CDDL-1.1

Version 1.1

· 1. Definitions.

· 1.1. "Contributor" means each individual or entity that creates or contributes to the creation of
Modifications.

· 1.2. "Contributor Version" means the combination of the Original Software, prior Modifications
used by a Contributor (if any), and the Modifications made by that particular Contributor.

· 1.3. "Covered Software" means (a) the Original Software, or (b) Modifications, or (c) the
combination of files containing Original Software with files containing Modifications, in each
case including portions thereof.

· 1.4. "Executable" means the Covered Software in any form other than Source Code.

https://creativecommons.org/publicdomain/zero/1.0/
https://spdx.org/licenses/CDDL-1.1

331

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

· 1.5. "Initial Developer" means the individual or entity that first makes Original Software available
under this License.

· 1.6. "Larger Work" means a work which combines Covered Software or portions thereof with
code not governed by the terms of this License.

· 1.7. "License" means this document.

· 1.8. "Licensable" means having the right to grant, to the maximum extent possible, whether at
the time of the initial grant or subsequently acquired, any and all of the rights conveyed herein.

· 1.9. "Modifications" means the Source Code and Executable form of any of the following:

· A. Any file that results from an addition to, deletion from or modification of the contents of a file
containing Original Software or previous Modifications;

· B. Any new file that contains any part of the Original Software or previous Modification; or

· C. Any new file that is contributed or otherwise made available under the terms of this
License.

· 1.10. "Original Software" means the Source Code and Executable form of computer software
code that is originally released under this License.

· 1.11. "Patent Claims" means any patent claim(s), now owned or hereafter acquired, including
without limitation, method, process, and apparatus claims, in any patent Licensable by grantor.

· 1.12. "Source Code" means (a) the common form of computer software code in which
modifications are made and (b) associated documentation included in or with such code.

· 1.13. "You" (or "Your") means an individual or a legal entity exercising rights under, and
complying with all of the terms of, this License. For legal entities, "You" includes any entity
which controls, is controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial ownership of such entity.

· 2. License Grants.

· 2.1. The Initial Developer Grant.

Conditioned upon Your compliance with Section 3.1 below and subject to third party intellectual
property claims, the Initial Developer hereby grants You a world-wide, royalty-free, non-exclusive
license:

· (a) under intellectual property rights (other than patent or trademark) Licensable by Initial
Developer, to use, reproduce, modify, display, perform, sublicense and distribute the Original
Software (or portions thereof), with or without Modifications, and/or as part of a Larger Work;
and

332

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

· (b) under Patent Claims infringed by the making, using or selling of Original Software, to
make, have made, use, practice, sell, and offer for sale, and/or otherwise dispose of the
Original Software (or portions thereof).

· (c) The licenses granted in Sections 2.1(a) and (b) are effective on the date Initial Developer
first distributes or otherwise makes the Original Software available to a third party under the
terms of this License.

· (d) Notwithstanding Section 2.1(b) above, no patent license is granted: (1) for code that You
delete from the Original Software, or (2) for infringements caused by: (i) the modification of
the Original Software, or (ii) the combination of the Original Software with other software or
devices.

· 2.2. Contributor Grant.

Conditioned upon Your compliance with Section 3.1 below and subject to third party intellectual
property claims, each Contributor hereby grants You a world-wide, royalty-free, non-exclusive
license:

· (a) under intellectual property rights (other than patent or trademark) Licensable by
Contributor to use, reproduce, modify, display, perform, sublicense and distribute the
Modifications created by such Contributor (or portions thereof), either on an unmodified basis,
with other Modifications, as Covered Software and/or as part of a Larger Work; and

· (b) under Patent Claims infringed by the making, using, or selling of Modifications made by
that Contributor either alone and/or in combination with its Contributor Version (or portions of
such combination), to make, use, sell, offer for sale, have made, and/or otherwise dispose of:
(1) Modifications made by that Contributor (or portions thereof); and (2) the combination of
Modifications made by that Contributor with its Contributor Version (or portions of such
combination).

· (c) The licenses granted in Sections 2.2(a) and 2.2(b) are effective on the date Contributor
first distributes or otherwise makes the Modifications available to a third party.

· (d) Notwithstanding Section 2.2(b) above, no patent license is granted: (1) for any code that
Contributor has deleted from the Contributor Version; (2) for infringements caused by: (i) third
party modifications of Contributor Version, or (ii) the combination of Modifications made by
that Contributor with other software (except as part of the Contributor Version) or other
devices; or (3) under Patent Claims infringed by Covered Software in the absence of
Modifications made by that Contributor.

· 3. Distribution Obligations.

· 3.1. Availability of Source Code.

Any Covered Software that You distribute or otherwise make available in Executable form must also
be made available in Source Code form and that Source Code form must be distributed only under
the terms of this License. You must include a copy of this License with every copy of the Source
Code form of the Covered Software You distribute or otherwise make available. You must inform
recipients of any such Covered Software in Executable form as to how they can obtain such

333

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

Covered Software in Source Code form in a reasonable manner on or through a medium
customarily used for software exchange.

· 3.2. Modifications.

The Modifications that You create or to which You contribute are governed by the terms of this
License. You represent that You believe Your Modifications are Your original creation(s) and/or You
have sufficient rights to grant the rights conveyed by this License.

· 3.3. Required Notices.

You must include a notice in each of Your Modifications that identifies You as the Contributor of the
Modification. You may not remove or alter any copyright, patent or trademark notices contained
within the Covered Software, or any notices of licensing or any descriptive text giving attribution to
any Contributor or the Initial Developer.

· 3.4. Application of Additional Terms.

You may not offer or impose any terms on any Covered Software in Source Code form that alters
or restricts the applicable version of this License or the recipients' rights hereunder. You may
choose to offer, and to charge a fee for, warranty, support, indemnity or liability obligations to one or
more recipients of Covered Software. However, you may do so only on Your own behalf, and not on
behalf of the Initial Developer or any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity or liability obligation is offered by You alone, and You hereby agree to
indemnify the Initial Developer and every Contributor for any liability incurred by the Initial Developer
or such Contributor as a result of warranty, support, indemnity or liability terms You offer.

· 3.5. Distribution of Executable Versions.

You may distribute the Executable form of the Covered Software under the terms of this License or
under the terms of a license of Your choice, which may contain terms different from this License,
provided that You are in compliance with the terms of this License and that the license for the
Executable form does not attempt to limit or alter the recipient's rights in the Source Code form
from the rights set forth in this License. If You distribute the Covered Software in Executable form
under a different license, You must make it absolutely clear that any terms which differ from this
License are offered by You alone, not by the Initial Developer or Contributor. You hereby agree to
indemnify the Initial Developer and every Contributor for any liability incurred by the Initial Developer
or such Contributor as a result of any such terms You offer.

· 3.6. Larger Works.

You may create a Larger Work by combining Covered Software with other code not governed by
the terms of this License and distribute the Larger Work as a single product. In such a case, You
must make sure the requirements of this License are fulfilled for the Covered Software.

· 4. Versions of the License.

· 4.1. New Versions.

Oracle is the initial license steward and may publish revised and/or new versions of this License
from time to time. Each version will be given a distinguishing version number. Except as provided in
Section 4.3, no one other than the license steward has the right to modify this License.

334

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

· 4.2. Effect of New Versions.

You may always continue to use, distribute or otherwise make the Covered Software available
under the terms of the version of the License under which You originally received the Covered
Software. If the Initial Developer includes a notice in the Original Software prohibiting it from being
distributed or otherwise made available under any subsequent version of the License, You must
distribute and make the Covered Software available under the terms of the version of the License
under which You originally received the Covered Software. Otherwise, You may also choose to use,
distribute or otherwise make the Covered Software available under the terms of any subsequent
version of the License published by the license steward.

· 4.3. Modified Versions.

When You are an Initial Developer and You want to create a new license for Your Original Software,
You may create and use a modified version of this License if You: (a) rename the license and
remove any references to the name of the license steward (except to note that the license differs
from this License); and (b) otherwise make it clear that the license contains terms which differ from
this License.

· 5. DISCLAIMER OF WARRANTY.

COVERED SOFTWARE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, WARRANTIES THAT THE COVERED SOFTWARE IS FREE OF DEFECTS,
MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED SOFTWARE IS WITH
YOU. SHOULD ANY COVERED SOFTWARE PROVE DEFECTIVE IN ANY RESPECT, YOU
(NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF
ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY COVERED
SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

· 6. TERMINATION.

· 6.1. This License and the rights granted hereunder will terminate automatically if You fail to
comply with terms herein and fail to cure such breach within 30 days of becoming aware of the
breach. Provisions which, by their nature, must remain in effect beyond the termination of this
License shall survive.

· 6.2. If You assert a patent infringement claim (excluding declaratory judgment actions) against
Initial Developer or a Contributor (the Initial Developer or Contributor against whom You assert
such claim is referred to as "Participant") alleging that the Participant Software (meaning the
Contributor Version where the Participant is a Contributor or the Original Software where the
Participant is the Initial Developer) directly or indirectly infringes any patent, then any and all
rights granted directly or indirectly to You by such Participant, the Initial Developer (if the Initial
Developer is not the Participant) and all Contributors under Sections 2.1 and/or 2.2 of this
License shall, upon 60 days notice from Participant terminate prospectively and automatically at
the expiration of such 60 day notice period, unless if within such 60 day period You withdraw
Your claim with respect to the Participant Software against such Participant either unilaterally or
pursuant to a written agreement with Participant.

335

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

· 6.3. If You assert a patent infringement claim against Participant alleging that the Participant
Software directly or indirectly infringes any patent where such claim is resolved (such as by
license or settlement) prior to the initiation of patent infringement litigation, then the reasonable
value of the licenses granted by such Participant under Sections 2.1 or 2.2 shall be taken into
account in determining the amount or value of any payment or license.

· 6.4. In the event of termination under Sections 6.1 or 6.2 above, all end user licenses that have
been validly granted by You or any distributor hereunder prior to termination (excluding licenses
granted to You by any distributor) shall survive termination.

· 7. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT
(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU, THE INITIAL
DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED
SOFTWARE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON
FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY
CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL,
WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER
COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED
OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF LIABILITY SHALL NOT APPLY
TO LIABILITY FOR DEATH OR PERSONAL INJURY RESULTING FROM SUCH PARTY'S
NEGLIGENCE TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION AND LIMITATION MAY NOT APPLY TO
YOU.

· 8. U.S. GOVERNMENT END USERS.

The Covered Software is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct.
1995), consisting of "commercial computer software" (as that term is defined at 48 C.F.R. §
252.227-7014(a)(1)) and "commercial computer software documentation" as such terms are used
in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1
through 227.7202-4 (June 1995), all U.S. Government End Users acquire Covered Software with
only those rights set forth herein. This U.S. Government Rights clause is in lieu of, and supersedes,
any other FAR, DFAR, or other clause or provision that addresses Government rights in computer
software under this License.

· 9. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter hereof. If any provision
of this License is held to be unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. This License shall be governed by the law of the jurisdiction
specified in a notice contained within the Original Software (except to the extent applicable law, if
any, provides otherwise), excluding such jurisdiction's conflict-of-law provisions. Any litigation
relating to this License shall be subject to the jurisdiction of the courts located in the jurisdiction and
venue specified in a notice contained within the Original Software, with the losing party responsible
for costs, including, without limitation, court costs and reasonable attorneys' fees and expenses.
The application of the United Nations Convention on Contracts for the International Sale of Goods is
expressly excluded. Any law or regulation which provides that the language of a contract shall be

336

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

construed against the drafter shall not apply to this License. You agree that You alone are
responsible for compliance with the United States export administration regulations (and the export
control laws and regulation of any other countries) when You use, distribute or otherwise make
available any Covered Software.

· 10. RESPONSIBILITY FOR CLAIMS.

As between Initial Developer and the Contributors, each party is responsible for claims and
damages arising, directly or indirectly, out of its utilization of rights under this License and You
agree to work with Initial Developer and Contributors to distribute such responsibility on an equitable
basis. Nothing herein is intended or shall be deemed to constitute any admission of liability.

NOTICE PURSUANT TO SECTION 9 OF THE COMMON DEVELOPMENT AND DISTRIBUTION
LICENSE (CDDL)

The code released under the CDDL shall be governed by the laws of the State of California
(excluding conflict-of-law provisions). Any litigation relating to this License shall be subject to the
jurisdiction of the Federal Courts of the Northern District of California and the state courts of the
State of California, with venue lying in Santa Clara County, California.

9.1.6 GPL 2.0

GNU GENERAL PUBLIC LICENSE

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

337

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an

338

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself
is interactive but does not normally print such an announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-

339

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the
recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not distribute the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely from distribution of
the Program.

340

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

341

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

9.1.7 LGPL 2.1

GNU LESSER GENERAL PUBLIC LICENSE

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.
[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU
Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages--typically libraries--of the Free Software Foundation and other authors who decide to use
it. You can use it too, but we suggest you first think carefully about whether this license or the
ordinary General Public License is the better strategy to use in any particular case, based on the
explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish); that you receive source code or can get it if you want it;

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

342

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

that you can change the software and use pieces of it in new free programs; and that you are
informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights
or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get the
source code. If you link other code with the library, you must provide complete object files to the
recipients, so that they can relink them with the library after making changes to the library and
recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free
library. Also, if the library is modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original author's reputation will not be
affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to
make sure that a company cannot effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a
version of the library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use this license for
certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination
of the two is legally speaking a combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the entire combination fits its criteria of
freedom. The Lesser General Public License permits more lax criteria for linking other code with the
library.

We call this license the "Lesser" General Public License because it does Less to protect the user's
freedom than the ordinary General Public License. It also provides other free software developers
Less of an advantage over competing non-free programs. These disadvantages are the reason we
use the ordinary General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use
of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that a free library does the same job as
widely used non-free libraries. In this case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU C

343

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

Library in non-free programs enables many more people to use the whole GNU operating system,
as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does ensure
that the user of a program that is linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a "work based on the library" and a "work that uses the library".
The former contains code derived from the library, whereas the latter must be combined with the
library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice
placed by the copyright holder or other authorized party saying it may be distributed under the terms
of this Lesser General Public License (also called "this License"). Each licensee is addressed as
"you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently
linked with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under
these terms. A "work based on the Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with
modifications and/or translated straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a
library, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of
the library.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based on the Library (independent
of the use of the Library in a tool for writing it). Whether that is true depends on what the Library
does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

344

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based
on the Library, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

§ a) The modified work must itself be a software library.

§ b) You must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

§ c) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

§ d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does
not supply such function or table, the facility still operates, and performs whatever part of its
purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not supply it,
the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Library, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Library, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a
work based on the Library) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this
License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not
a library.

345

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it
with the complete corresponding machine-readable source code, which must be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source along
with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with
the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work,
in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this
License.

However, linking a "work that uses the Library" with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a "work that uses
the library". The executable is therefore covered by this License. Section 6 states terms for
distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the
object code for the work may be a derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be linked without the Library, or if the
work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object file is
unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object
code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the
Library" with the Library to produce a work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit modification of the work for the
customer's own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the copyright notice for the Library
among them, as well as a reference directing the user to the copy of this License. Also, you must
do one of these things:

§ a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the
complete machine-readable "work that uses the Library", as object code and/or source code, so
that the user can modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of definitions files in

346

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

the Library will not necessarily be able to recompile the application to use the modified
definitions.)

§ b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is
one that (1) uses at run time a copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2) will operate properly with a
modified version of the library, if the user installs one, as long as the modified version is interface-
compatible with the version that the work was made with.

§ c) Accompany the work with a written offer, valid for at least three years, to give the same user
the materials specified in Subsection 6a, above, for a charge no more than the cost of performing
this distribution.

§ d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

§ e) Verify that the user has already received a copy of these materials or that you have already
sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and
utility programs needed for reproducing the executable from it. However, as a special exception, the
materials to be distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries
that do not normally accompany the operating system. Such a contradiction means you cannot use
both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on the Library and of the other
library facilities is otherwise permitted, and provided that you do these two things:

§ a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

§ b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library
(or any work based on the Library), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Library or works based on it.

347

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify the
Library subject to these terms and conditions. You may not impose any further restrictions on the
recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not distribute the Library at all. For example, if a patent license would not permit royalty-free
redistribution of the Library by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely from distribution of
the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Library under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Library does not specify a license version number, you may choose any version
ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the

348

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

9.1.8 MIT

https://opensource.org/licenses/MIT

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

https://opensource.org/licenses/MIT

349

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

9.1.9 OTNLA

Oracle Technology Network License Agreement

https://www.oracle.com/downloads/licenses/distribution-license.html

Oracle is willing to authorize Your access to software associated with this License
Agreement (“ Agreement”) only upon the condition that You accept that this
Agreement governs Your use of the software. By selecting the “ Accept License
Agreement” button or box (or the equivalent) or installing or using the Programs You
indicate Your acceptance of this Agreement and Your agreement, as an authorized
representative of Your company or organization (if being acquired for use by an
entity) or as an individual, to comply with the license terms that apply to the software
that You wish to download and access. If You are not willing to be bound by this
Agreement, do not select the “ Accept License Agreement” button or box (or the
equivalent) and do not download or access the software.

Definitions

"Oracle" refers to Oracle America, Inc. "You" and "Your" refers to (a) a company or organization
(each an “Entity”) accessing the Programs, if use of the Programs will be on behalf of such Entity;
or (b) an individual accessing the Programs, if use of the Programs will not be on behalf of an
Entity. “Contractors” refers to Your agents and contractors (including, without limitation,
outsourcers). "Program(s)" refers to Oracle software provided by Oracle pursuant to this
Agreement and any updates, error corrections, and/or Program Documentation provided by Oracle.
“Program Documentation” refers to Program user manuals and Program installation manuals, if
any. If available, Program Documentation may be delivered with the Programs and/or may be
accessed from www.oracle.com/documentation. “Associated Product” refers to the Oracle
product(s), if any, and as identified in the Programs documentation or on the Programs download
site, with which the Programs are intended to enable or enhance interoperation with Your
application(s). “Separate Terms” refers to separate license terms that are specified in the Program
Documentation, readmes or notice files and that apply to Separately Licensed Third Party
Technology. “Separately Licensed Third Party Technology” refers to third party technology that is
licensed under Separate Terms and not under the terms of this Agreement.

License Rights and Restrictions

https://www.oracle.com/downloads/licenses/distribution-license.html
http://www.oracle.com/documentation

350

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

Oracle grants You a nonexclusive, nontransferable, limited license to, subject to the restrictions
stated in this Agreement, (a) internally use the Programs solely for the purposes of developing,
testing, prototyping and demonstrating Your applications, and running the Programs for Your own
internal business operations; and (b) redistribute unmodified Programs and Programs
Documentation pursuant to the Programs Redistribution section below. You may allow Your
Contractor(s) to use the Programs, provided they are acting on Your behalf to exercise license
rights granted in this Agreement and further provided that You are responsible for their compliance
with this Agreement in such use. You will have a written agreement with Your Contractor(s) that
strictly limits their right to use the Programs and that otherwise protects Oracle’s intellectual
property rights to the same extent as this Agreement. You may make copies of the Programs to the
extent reasonably necessary to exercise the license rights granted in this Agreement. You may
make one copy of the Programs for backup purposes.

Further, You may not:

· remove or modify any Program markings or any notice of Oracle’s or a licensor’s proprietary
rights;

· use the Programs to provide third party training unless Oracle expressly authorizes such use on
the Program’s download page;

· assign this Agreement or distribute, give, or transfer the Programs or an interest in them to any
third party, except as expressly permitted in this Agreement (the foregoing shall not be construed
to limit the rights You may otherwise have with respect to Separately Licensed Third Party
Technology);

· cause or permit reverse engineering (unless required by law for interoperability), disassembly or
decompilation of the Programs; and

· disclose results of any Program benchmark tests without Oracle’s prior consent.

The Programs may contain source code that, unless expressly licensed in this Agreement for other
purposes (for example, licensed under an open source license), is provided solely for reference
purposes pursuant to the terms of this Agreement and may not be modified.

All rights not expressly granted in this Agreement are reserved by Oracle. If You want to use the
Programs or Your application for any purpose other than as expressly permitted under this
Agreement, You must obtain from Oracle or an Oracle reseller a valid Programs license under a
separate agreement permitting such use. However, You acknowledge that the Programs may not
be intended for production use and/or Oracle may not make a version of the Programs available for
production or other purposes; any development or other work You undertake with the Programs is
at Your sole risk.

Programs Redistr ibution

We grant You a nonexclusive, nontransferable right to copy and distribute unmodified Programs
and Programs Documentation as part of and included in Your application that is intended to
interoperate with the Associated Product, if any, provided that You do not charge Your end users
any additional fees for the use of the Programs. Prior to distributing the Programs and Programs

351

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

Documentation, You shall require Your end users to execute an agreement binding them to terms,
with respect to the Programs and Programs Documentation, materially consistent and no less
restrictive than those contained in this section and the sections of this Agreement entitled “License
Rights and Restrictions” (except that the redistribution right granted to You shall not be included;
Your end users may not distribute Programs and Programs Documentation to any third parties),
"Ownership," "Export Controls," "Disclaimer of Warranties; Limitation of Liability," "No Technical
Support" (with respect to Oracle support; You may provide Your own support for Programs at Your
discretion), "Audit; Termination (except that Oracle’s audit right shall not be included)," "Relationship
Between the Parties," and “U.S. Government End Users.” You must also include a provision stating
that Your end users shall have no right to distribute the Programs and Programs Documentation,
and a provision specifying us as a third party beneficiary of the agreement. You are responsible for
obtaining these agreements with Your end users.

You agree to: (a) defend and indemnify us against all claims and damages caused by Your
distribution of the Programs and Programs Documentation in breach of this Agreement and/or
failure to include the required contractual provisions in Your end user agreement as stated above;
(b) keep executed end user agreements and records of end user information including name,
address, date of distribution and identity of Programs distributed; (c) allow us to inspect Your end
user agreements and records upon request; and, (d) enforce the terms of Your end user
agreements so as to effect a timely cure of any end user breach, and to notify us of any breach of
the terms.

Ownership

Oracle or its licensors retain all ownership and intellectual property rights to the Programs.

Third-Party Technology

The Programs may contain or require the use of third party technology that is provided with the
Programs. Oracle may provide certain notices to You in Program Documentation, readmes or
notice files in connection with such third party technology. Third party technology will be licensed to
You either under the terms of this Agreement or, if specified in the Program Documentation,
readmes or notice files, under Separate Terms. Your rights to use Separately Licensed Third Party
Technology under Separate Terms are not restricted in any way by this Agreement. However, for
clarity, notwithstanding the existence of a notice, third party technology that is not Separately
Licensed Third Party Technology shall be deemed part of the Programs and is licensed to You
under the terms of this Agreement.

Source Code for Open Source Software

For software that You receive from Oracle in binary form that is licensed under an open source
license that gives You the right to receive the source code for that binary, You can obtain a copy of
the applicable source code from https://oss.oracle.com/sources/ or
http://www.oracle.com/goto/opensourcecode. If the source code for such software was not

352

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

provided to You with the binary, You can also receive a copy of the source code on physical media
by submitting a written request pursuant to the instructions in the "Written Offer for Source Code"
section of the latter website.

Export Controls

Export laws and regulations of the United States and any other relevant local export laws and
regulations apply to the Programs . You agree that such export control laws govern Your use of the
Programs (including technical data) and any services deliverables provided under this agreement,
and You agree to comply with all such export laws and regulations (including "deemed export" and
"deemed re-export" regulations). You agree that no data, information, program and/or materials
resulting from Programs or services (or direct products thereof) will be exported, directly or
indirectly, in violation of these laws, or will be used for any purpose prohibited by these laws
including, without limitation, nuclear, chemical, or biological weapons proliferation, or development
of missile technology. Accordingly, You confirm:

· You will not download, provide, make available or otherwise export or re-export the Programs,
directly or indirectly, to countries prohibited by applicable laws and regulations nor to citizens,
nationals or residents of those countries.

· You are not listed on the United States Department of Treasury lists of Specially Designated
Nationals and Blocked Persons, Specially Designated Terrorists, and Specially Designated
Narcotic Traffickers, nor are You listed on the United States Department of Commerce Table of
Denial Orders.

· You will not download or otherwise export or re-export the Programs, directly or indirectly, to
persons on the above mentioned lists.

· You will not use the Programs for, and will not allow the Programs to be used for, any purposes
prohibited by applicable law, including, without limitation, for the development, design,
manufacture or production of nuclear, chemical or biological weapons of mass destruction.

·

Information Collection

The Programs’ installation and/or auto-update processes, if any, may transmit a limited amount of
data to Oracle or its service provider about those processes to help Oracle understand and
optimize them. Oracle does not associate the data with personally identifiable information. Refer to
Oracle’s Privacy Policy at www.oracle.com/privacy.

Disclaimer of Warranties; Limitation of Liability

http://www.oracle.com/privacy

353

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

THE PROGRAMS ARE PROVIDED " AS IS" WITHOUT WARRANTY OF ANY KIND.
ORACLE FURTHER DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT .
IN NO EVENT WILL ORACLE BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF
PROFITS, REVENUE, DATA OR DATA USE, INCURRED BY YOU OR ANY THIRD
PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT, EVEN IF ORACLE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ORACLE’S ENTIRE
LIABILITY FOR DAMAGES UNDER THIS AGREEMENT SHALL IN NO EVENT
EXCEED ONE THOUSAND DOLLARS (U.S. $1,000) .

No Technical Support

Unless Oracle support for the Programs, if any, is expressly included in a separate, current support
agreement between You and Oracle, Oracle’s technical support organization will not provide
technical support, phone support, or updates to You for the Programs provided under this
Agreement.

Audit; Termination

Oracle may audit Your use of the Programs. You may terminate this Agreement by destroying all
copies of the Programs. This Agreement shall automatically terminate without notice if You fail to
comply with any of the terms of this Agreement, in which case You shall promptly destroy all copies
of the Programs.

U.S. Government End Users

Programs and/or Programs Documentation delivered to U.S. Government end users are
“commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs and/or Programs Documentation shall be subject to the license terms
and license restrictions set forth in this Agreement. No other rights are granted to the U.S.
Government.

Relationship Between the Parties

Oracle is an independent contractor and we agree that no partnership, joint venture, or agency
relationship exists between us. We each will be responsible for paying our own employees,
including employment related taxes and insurance.. Nothing in this agreement shall be construed to
limit either party's right to independently develop or distribute software that is functionally similar to

354

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

the other party's products, so long as proprietary information of the other party is not included in
such software.

Entire Agreement; Governing Law

You agree that this Agreement is the complete agreement for the Programs and this Agreement
supersedes all prior or contemporaneous agreements or representations, including any clickwrap,
shrinkwrap or similar licenses, or license agreements for prior versions of the Programs. This
Agreement may not be modified and the rights and restrictions may not be altered or waived except
in a writing signed by authorized representatives of You and of Oracle. If any term of this Agreement
is found to be invalid or unenforceable, the remaining provisions will remain effective.

This Agreement is governed by the substantive and procedural laws of the State of California, USA,
and You and Oracle agree to submit to the exclusive jurisdiction of, and venue in, the courts of San
Francisco or Santa Clara counties in California in any dispute arising out of or relating to this
Agreement.

Notices

Should you have any questions concerning this License Agreement, or if you desire to contact
Oracle for any reason, please write:

· Oracle America, Inc.

· 500 Oracle Parkway

· Redwood City, CA 94065

Oracle Employees: Under no circumstances are Oracle Employees authorized to download
software for the purpose of distributing it to customers. Oracle products are available to employees
for internal use or demonstration purposes only. In keeping with Oracle's trade compliance
obligations under U.S. and applicable multilateral law, failure to comply with this policy could result
in disciplinary action up to and including termination.

Last updated: 30 November 2016

9.1.10 SAP Developer License Agreement

SAP DEVELOPER LICENSE AGREEMENT

https://tools.hana.ondemand.com/developer-license-3_1.txt

Version 3.1

https://tools.hana.ondemand.com/developer-license-3_1.txt

355

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

Please scroll down and read the following Developer License Agreement carefully ("Developer
Agreement"). By clicking "I Accept" or by attempting to download, or install, or use the SAP
software and other materials that accompany this Developer Agreement ("SAP Materials"), You
agree that this Developer Agreement forms a legally binding agreement between You ("You" or
"Your") and SAP SE, for and on behalf of itself and its subsidiaries and affiliates (as defined in
Section 15 of the German Stock Corporation Act) and You agree to be bound by all of the terms and
conditions stated in this Developer Agreement. If You are trying to access or download the SAP
Materials on behalf of Your employer or as a consultant or agent of a third party (either "Your
Company"), You represent and warrant that You have the authority to act on behalf of and bind Your
Company to the terms of this Developer Agreement and everywhere in this Developer Agreement
that refers to 'You' or 'Your' shall also include Your Company. If You do not agree to these terms, do
not click "I Accept", and do not attempt to access or use the SAP Materials.

1. LICENSE: SAP grants You a non-exclusive, non-transferable, non-sublicensable, revocable,
limited use license to copy, reproduce and distribute the application programming interfaces ("API"),
documentation, plug-ins, templates, scripts and sample code ("Tools") on a desktop, laptop, tablet,
smart phone, or other appropriate computer device that You own or control (any, a "Computer") to
create new applications ("Customer Applications"). You agree that the Customer Applications will
not: (a) unreasonably impair, degrade or reduce the performance or security of any SAP software
applications, services or related technology ("Software"); (b) enable the bypassing or circumventing
of SAP's license restrictions and/or provide users with access to the Software to which such users
are not licensed; (c) render or provide, without prior written consent from SAP, any information
concerning SAP software license terms, Software, or any other information related to SAP
products; or (d) permit mass data extraction from an SAP product to a non-SAP product, including
use, modification, saving or other processing of such data in the non-SAP product. In exchange for
the right to develop Customer Applications under this Agreement, You covenant not to assert any
Intellectual Property Rights in Customer Applications created by You against any SAP product,
service, or future SAP development.

2. INTELLECTUAL PROPERTY: (a) SAP or its licensors retain all ownership and intellectual
property rights in the APIs, Tools and Software. You may not: a) remove or modify any marks or
proprietary notices of SAP, b) provide or make the APIs, Tools or Software available to any third
party, c) assign this Developer Agreement or give or transfer the APIs, Tools or Software or an
interest in them to another individual or entity, d) decompile, disassemble or reverse engineer
(except to the extent permitted by applicable law) the APIs Tools or Software, (e) create derivative
works of or based on the APIs, Tools or Software, (f) use any SAP name, trademark or logo, or (g)
use the APIs or Tools to modify existing Software or other SAP product functionality or to access
the Software or other SAP products' source code or metadata.
(b) Subject to SAP's underlying rights in any part of the APIs, Tools or Software, You retain all
ownership and intellectual property rights in Your Customer Applications.

3. FREE AND OPEN SOURCE COMPONENTS: The SAP Materials may include certain third party
free or open source components ("FOSS Components"). You may have additional rights in such
FOSS Components that are provided by the third party licensors of those components.

356

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

4. THIRD PARTY DEPENDENCIES: The SAP Materials may require certain third party software
dependencies ("Dependencies") for the use or operation of such SAP Materials. These
dependencies may be identified by SAP in Maven POM files, product documentation or by other
means. SAP does not grant You any rights in or to such Dependencies under this Developer
Agreement. You are solely responsible for the acquisition, installation and use of Dependencies.
SAP DOES NOT MAKE ANY REPRESENTATIONS OR WARRANTIES IN RESPECT OF
DEPENDENCIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE. IN PARTICULAR, SAP
DOES NOT WARRANT THAT DEPENDENCIES WILL BE AVAILABLE, ERROR FREE,
INTEROPERABLE WITH THE SAP MATERIALS, SUITABLE FOR ANY PARTICULAR PURPOSE
OR NON-INFRINGING. YOU ASSUME ALL RISKS ASSOCIATED WITH THE USE OF
DEPENDENCIES, INCLUDING WITHOUT LIMITATION RISKS RELATING TO QUALITY,
AVAILABILITY, PERFORMANCE, DATA LOSS, UTILITY IN A PRODUCTION ENVIRONMENT, AND
NON-INFRINGEMENT. IN NO EVENT WILL SAP BE LIABLE DIRECTLY OR INDIRECTLY IN
RESPECT OF ANY USE OF DEPENDENCIES BY YOU.

5. WARRANTY:
a) If You are located outside the US or Canada: AS THE API AND TOOLS ARE PROVIDED TO
YOU FREE OF CHARGE, SAP DOES NOT GUARANTEE OR WARRANT ANY FEATURES OR
QUALITIES OF THE TOOLS OR API OR GIVE ANY UNDERTAKING WITH REGARD TO ANY
OTHER QUALITY. NO SUCH WARRANTY OR UNDERTAKING SHALL BE IMPLIED BY YOU
FROM ANY DESCRIPTION IN THE API OR TOOLS OR ANY AVAILABLE DOCUMENTATION OR
ANY OTHER COMMUNICATION OR ADVERTISEMENT. IN PARTICULAR, SAP DOES NOT
WARRANT THAT THE SOFTWARE WILL BE AVAILABLE UNINTERRUPTED, ERROR FREE,
OR PERMANENTLY AVAILABLE. FOR THE TOOLS AND API ALL WARRANTY CLAIMS ARE
SUBJECT TO THE LIMITATION OF LIABILITY STIPULATED IN SECTION 4 BELOW.
b) If You are located in the US or Canada: THE API AND TOOLS ARE LICENSED TO YOU "AS
IS", WITHOUT ANY WARRANTY, ESCROW, TRAINING, MAINTENANCE, OR SERVICE
OBLIGATIONS WHATSOEVER ON THE PART OF SAP. SAP MAKES NO EXPRESS OR
IMPLIED WARRANTIES OR CONDITIONS OF SALE OF ANY TYPE WHATSOEVER, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A
PARTICULAR PURPOSE. IN PARTICULAR, SAP DOES NOT WARRANT THAT THE
SOFTWARE WILL BE AVAILABLE UNINTERRUPTED, ERROR FREE, OR PERMANENTLY
AVAILABLE. YOU ASSUME ALL RISKS ASSOCIATED WITH THE USE OF THE API AND TOOLS,
INCLUDING WITHOUT LIMITATION RISKS RELATING TO QUALITY, AVAILABILITY,
PERFORMANCE, DATA LOSS, AND UTILITY IN A PRODUCTION ENVIRONMENT.

6. LIMITATION OF LIABILITY:
a) If You are located outside the US or Canada: IRRESPECTIVE OF THE LEGAL REASONS, SAP
SHALL ONLY BE LIABLE FOR DAMAGES UNDER THIS AGREEMENT IF SUCH DAMAGE (I) CAN
BE CLAIMED UNDER THE GERMAN PRODUCT LIABILITY ACT OR (II) IS CAUSED BY
INTENTIONAL MISCONDUCT OF SAP OR (III) CONSISTS OF PERSONAL INJURY. IN ALL
OTHER CASES, NEITHER SAP NOR ITS EMPLOYEES, AGENTS AND SUBCONTRACTORS
SHALL BE LIABLE FOR ANY KIND OF DAMAGE OR CLAIMS HEREUNDER.
b) If You are located in the US or Canada: IN NO EVENT SHALL SAP BE LIABLE TO YOU, YOUR
COMPANY OR TO ANY THIRD PARTY FOR ANY DAMAGES IN AN AMOUNT IN EXCESS OF

357

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

$100 ARISING IN CONNECTION WITH YOUR USE OF OR INABILITY TO USE THE TOOLS OR
API OR IN CONNECTION WITH SAP'S PROVISION OF OR FAILURE TO PROVIDE SERVICES
PERTAINING TO THE TOOLS OR API, OR AS A RESULT OF ANY DEFECT IN THE API OR
TOOLS. THIS DISCLAIMER OF LIABILITY SHALL APPLY REGARDLESS OF THE FORM OF
ACTION THAT MAY BE BROUGHT AGAINST SAP, WHETHER IN CONTRACT OR TORT,
INCLUDING WITHOUT LIMITATION ANY ACTION FOR NEGLIGENCE. YOUR SOLE REMEDY IN
THE EVENT OF BREACH OF THIS DEVELOPER AGREEMENT BY SAP OR FOR ANY OTHER
CLAIM RELATED TO THE API OR TOOLS SHALL BE TERMINATION OF THIS AGREEMENT.
NOTWITHSTANDING ANYTHING TO THE CONTRARY HEREIN, UNDER NO CIRCUMSTANCES
SHALL SAP AND ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PERSON OR ENTITY
FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT DAMAGES, LOSS OF
GOOD WILL OR BUSINESS PROFITS, WORK STOPPAGE, DATA LOSS, COMPUTER FAILURE
OR MALFUNCTION, ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSS, OR
EXEMPLARY OR PUNITIVE DAMAGES.

7. INDEMNITY: You will fully indemnify, hold harmless and defend SAP against law suits based on
any claim: (a) that any Customer Application created by You infringes or misappropriates any
patent, copyright, trademark, trade secrets, or other proprietary rights of a third party, or (b) related
to Your alleged violation of the terms of this Developer Agreement.

8. EXPORT: The Tools and API are subject to German, EU and US export control regulations. You
confirm that: a) You will not use the Tools or API for, and will not allow the Tools or API to be used
for, any purposes prohibited by German, EU and US law, including, without limitation, for the
development, design, manufacture or production of nuclear, chemical or biological weapons of
mass destruction; b) You are not located in Cuba, Iran, Sudan, Iraq, North Korea, Syria, nor any
other country to which the United States has prohibited export or that has been designated by the
U.S. Government as a "terrorist supporting" country (any, an "US Embargoed Country"); c) You are
not a citizen, national or resident of, and are not under the control of, a US Embargoed Country; d)
You will not download or otherwise export or re-export the API or Tools, directly or indirectly, to a US
Embargoed Country nor to citizens, nationals or residents of a US Embargoed Country; e) You are
not listed on the United States Department of Treasury lists of Specially Designated Nationals,
Specially Designated Terrorists, and Specially Designated Narcotic Traffickers, nor listed on the
United States Department of Commerce Table of Denial Orders or any other U.S. government list
of prohibited or restricted parties and f) You will not download or otherwise export or re-export the
API or Tools , directly or indirectly, to persons on the above-mentioned lists.

9. SUPPORT: Other than what is made available on the SAP Community Website (SCN) by SAP
at its sole discretion and by SCN members, SAP does not offer support for the API or Tools which
are the subject of this Developer Agreement.

10. TERM AND TERMINATION: You may terminate this Developer Agreement by destroying all
copies of the API and Tools on Your Computer(s). SAP may terminate Your license to use the API
and Tools immediately if You fail to comply with any of the terms of this Developer Agreement, or,
for SAP's convenience by providing you with ten (10) day's written notice of termination (including
email). In case of termination or expiration of this Developer Agreement, You must destroy all

358

DTS Product Manual © 2023 Realworld Systems B.V.

Licenses

copies of the API and Tools immediately. In the event Your Company or any of the intellectual
property you create using the API, Tools or Software are acquired (by merger, purchase of stock,
assets or intellectual property or exclusive license), or You become employed, by a direct
competitor of SAP, then this Development Agreement and all licenses granted in this Developer
Agreement shall immediately terminate upon the date of such acquisition.

11. LAW/VENUE:
a) If You are located outside the US or Canada: This Developer Agreement is governed by and
construed in accordance with the laws of the Germany. You and SAP agree to submit to the
exclusive jurisdiction of, and venue in, the courts of Karlsruhe in Germany in any dispute arising out
of or relating to this Developer Agreement.
b) If You are located in the US or Canada: This Developer Agreement shall be governed by and
construed under the Commonwealth of Pennsylvania law without reference to its conflicts of law
principles. In the event of any conflicts between foreign law, rules, and regulations, and United
States of America law, rules, and regulations, United States of America law, rules, and regulations
shall prevail and govern. The United Nations Convention on Contracts for the International Sale of
Goods shall not apply to this Developer Agreement. The Uniform Computer Information
Transactions Act as enacted shall not apply.

12. MISCELLANEOUS: This Developer Agreement is the complete agreement for the API and Tools
licensed (including reference to information/documentation contained in a URL). This Developer
Agreement supersedes all prior or contemporaneous agreements or representations with regards
to the subject matter of this Developer Agreement. If any term of this Developer Agreement is found
to be invalid or unenforceable, the surviving provisions shall remain effective. SAP's failure to
enforce any right or provisions stipulated in this Developer Agreement will not constitute a waiver of
such provision, or any other provision of this Developer Agreement.

	Table of Contents
	Introduction
	Copyrights
	Welcome
	Manual Version
	Release Notes

	Deployment
	Prerequisites
	Basic Deployment

	Web UI
	Login
	Workspace
	Home
	Project Info Dialog
	Add New Project

	Project
	Project Information
	Project Notifications
	Project Dashboard
	Published Projects
	All Projects

	Sources
	Connectors Drawer
	Create New Connector
	Connector Details

	Assets Drawer
	Asset Details Drawer
	Collection Details Drawer
	Routine Details Drawer
	Topic Details Drawer

	Aggregates
	Aggregates Drawer
	Create New Aggregate
	Aggregate Details

	Aggregate Assets
	Add New Aggregate Source

	Aggregate Asset Details Drawer

	Webservices
	Webservices Drawer
	Create New Webservice
	Webservice Details

	Webservice Assets Drawer
	Webservice Asset Details Drawer
	Webservice Stream Operations Drawer
	Webservice Routine Details Drawer
	Webservice Topic Details Drawer

	Left-Side Menu Toolbar

	Top Menu Toolbar
	Preferences Menu
	Webservice Deployers
	Connector Types
	Notification Senders

	User Menu

	Filters & Relationships
	Errors & Warnings

	Connectors
	Apache Kafka
	Connection Parameters
	Types
	Topics
	Limitations

	MariaDB
	Connection Parameters
	Types
	Geometry
	Tables and Views
	Routine Calls
	Limitations

	MS SQL Server
	Connection Parameters
	Types
	Geometry
	Tables and Views
	Routine Calls
	Limitations

	MySQL
	Connection Parameters
	Types
	Geometry
	Tables and Views
	Routine Calls
	Limitations

	Oracle
	Connection Parameters
	Types
	Geometry
	Tables and Views
	Routine Calls
	Limitations

	PostgreSQL
	Connection Parameters
	Types
	Geometry
	Tables and Views
	Routine Calls
	Limitations

	SAP Hana
	Connection Parameters
	Types
	Geometry
	Tables and Views
	Routine Calls
	Limitations

	Smallworld
	Connection Parameters
	Smallworld Environment
	Types
	Geometry
	Collections
	Routine Calls
	Registration
	Stream Results
	Registration Example

	Smallworld Client
	Limitations

	Web Service
	Connection Parameters
	Types
	Routine Calls
	Limitations

	Webservices
	Types
	Functionality
	Specification
	Access
	Integration
	Application Server
	External Security and Load Balancing
	Logging

	Limitations

	Technical Guide
	Architecture
	Controller
	GUI Controller
	Producer
	Client
	Webservice Client
	Smallworld Client

	Aggregator
	Agent
	GUI
	CLI

	Communication
	Types
	Streams
	Geometry
	Structure
	Corrections
	Examples
	Simple Point
	Oriented Point
	Multi Point
	Annotation
	Simple Line String
	Arc Line String
	Compound Line String
	NURBS
	Multi Line String
	Polygon
	Compound Polygon
	Rectangle
	Circle
	Multi Polygon
	Geometry Collection

	Predicate
	Aggregation
	Security
	Outline
	Registration and Authentication
	Setup

	Development
	Client
	Pre-Built
	Java Library
	Direct Usage Example
	Custom Implementation Usage

	.NET Library
	Direct Usage Example
	Custom Implementation Example

	Redis/JSON
	Registration Command
	Project Command
	Connector Command
	Record Stream Command
	Execute Remote Command

	Producer
	Project Artifacts
	CONNECTOR_CATEGORY
	CONNECTOR_TYPE
	NOTIFICATION_SENDER
	WEBSERVICE_DEPLOYER
	PROJECT_WIP
	PROJECT_RESOURCE
	PROJECT_OPERATION
	CONNECTOR
	COLLECTION_RESOURCE
	COLLECTION_DETAILS
	REMOTE_CALL_RESOURCE
	REMOTE_CALL_DETAILS
	TOPIC_RESOURCE
	TOPIC_DETAILS
	AGGREGATE
	WEBSERVICE
	PROJECT
	PROJECT_STATUS
	PRODUCER_STATUS
	CONSUMER_STATUS
	NotificationConfig
	NotificationTarget
	AttributeDescriptor
	ConstraintDefinition
	TypeResource
	AggregateSource
	AggregateRelationship
	WebserviceResource

	Known Limitations
	Licenses
	3rd Party Licenses
	Apache 2.0
	BSD 2-clause
	BSD 3-clause
	CCO 1.0
	CDDL 1.1
	GPL 2.0
	LGPL 2.1
	MIT
	OTNLA
	SAP Developer License Agreement

